Solution :
The sun emits = [tex]$4 \times 10^{26} $[/tex] J of energy per second
= [tex]$4 \times 10^{26} \ kg m^2 s^{-3} $[/tex]
We know, [tex]$1 \ J =1 \ kg \ m^2 / s^2 $[/tex]
[tex]$E=mC^2$[/tex] , where C = [tex]$3 \times 10^8 \ m/s$[/tex]
[tex]$E=mC^2$[/tex]
[tex]$J=M(M/s)^2$[/tex]
Dividing both sides by 1 second
[tex]$\frac{J}{s}=\frac{M \times m^2 s^{-2}}{sec}$[/tex]
[tex]$\frac{J}{s}=M \times m^2 s^{-3}$[/tex]
Then, [tex]$4 \times 10^{26} \ J/s = M \times m^2 s^{-3} \times (3 \times 10^8)^2$[/tex]
[tex]$M = \frac{4 \times 10^{26}}{9 \times10^{16}}$[/tex]
[tex]$M=4.44 \times 10^9 \ kg$[/tex]
Now according to the information, 99.3% hydrogen.
If 0.7 % of hydrogen produce = [tex]$4 \times 10^{26} $[/tex] J of energy per second
Then 1% of hydrogen will produce = [tex]$\frac{4 \times 10^{26}}{0.7}$[/tex] J energy per second
So, 100% of hydrogen will produce = [tex]$\frac{4 \times 10^{26}}{0.7} \times 100$[/tex] J energy per second
= [tex]$5.7143 \times 10^{28 }$[/tex] J energy per second
Mass of hydrogen undergo fusion in sun per second
[tex]$E=mC^2$[/tex]
Similarly, [tex]$\frac{J}{s}=M \times m^2 s^{-3}$[/tex]
[tex]$5.714 \times 10^{28} \ J/s = M \times (3 \times 10^8)^2 \ m^2 \ s^{-3}$[/tex]
[tex]$M = \frac{5.7143 \times 10^{28}}{9 \times 10^{16}}$[/tex] kg
[tex]$M= 6.349 \times 10^{11}$[/tex] kg