The luminosity of the Sun is 4 x 1026 W, which means that the sun emits 4 x 1026 J of energy every second. How much mass does it change into energy every second? Express your answer in kilograms.
In fusion reactions, only a small fraction of the hydrogen mass is converted into energy. 99.3% of the hydrogen is converted into helium, and just 0.7% of the hydrogen is converted into energy. Based on this information, how much hydrogen undergoes fusion in the Sun every second? Express your answer in kilograms.

Respuesta :

Solution :

The sun emits = [tex]$4 \times 10^{26} $[/tex] J of energy per second

                        = [tex]$4 \times 10^{26} \ kg m^2 s^{-3} $[/tex]

We know, [tex]$1 \ J =1 \ kg \ m^2 / s^2 $[/tex]

[tex]$E=mC^2$[/tex] ,   where C = [tex]$3 \times 10^8 \ m/s$[/tex]

[tex]$E=mC^2$[/tex]

[tex]$J=M(M/s)^2$[/tex]

Dividing both sides by 1 second

[tex]$\frac{J}{s}=\frac{M \times m^2 s^{-2}}{sec}$[/tex]

[tex]$\frac{J}{s}=M \times m^2 s^{-3}$[/tex]

Then, [tex]$4 \times 10^{26} \ J/s = M \times m^2 s^{-3} \times (3 \times 10^8)^2$[/tex]

      [tex]$M = \frac{4 \times 10^{26}}{9 \times10^{16}}$[/tex]

      [tex]$M=4.44 \times 10^9 \ kg$[/tex]

Now according to the information, 99.3% hydrogen.

If 0.7 % of hydrogen produce = [tex]$4 \times 10^{26} $[/tex] J of energy per second

Then 1% of hydrogen will produce = [tex]$\frac{4 \times 10^{26}}{0.7}$[/tex]   J energy per second

So, 100% of hydrogen will produce = [tex]$\frac{4 \times 10^{26}}{0.7} \times 100$[/tex]  J energy per second

                                                          = [tex]$5.7143 \times 10^{28 }$[/tex]  J energy per second

Mass of hydrogen undergo fusion in sun per second

[tex]$E=mC^2$[/tex]

Similarly, [tex]$\frac{J}{s}=M \times m^2 s^{-3}$[/tex]

[tex]$5.714 \times 10^{28} \ J/s = M \times (3 \times 10^8)^2 \ m^2 \ s^{-3}$[/tex]

[tex]$M = \frac{5.7143 \times 10^{28}}{9 \times 10^{16}}$[/tex]   kg

[tex]$M= 6.349 \times 10^{11}$[/tex] kg

ACCESS MORE