Let R be region in the xy-plane and β>0 be the constant. What is the region R that will minimize the value of integral (x² + y² - β²).
i.e.
[tex]\int \int _R (x^2 +y^2 - \beta^2) \ dA[/tex]
Answer:
0
Step-by-step explanation:
Given that:
[tex]\int \int _R (x^2 +y^2 - \beta^2) \ dA[/tex]
where;
R is the region in the xy-plane.
To minimize our double integral, we have to determine the region over which the function we are integrating has a negative value.
x² + y² - β² ≤ 0 ; where β > 0 is a constant
x² + y² ≤ β² is the circle with center (0,0)
Radius "β" because R: x² + y² ≤ β²
The polar coordinates: x = rcosθ and y = rsinθ
x² + y² = r²
⇒ r limits : r = 0 → β
⇒ θ limits : r = 0 → 2π
[tex]\iint_R(x^2+y^2-\beta^2) \ dA =\int\limits ^{2 \pi}_{\theta=0} \int \limits ^{\beta}_{r=0}( \beta^2 -\beta^2) \ rd \ rd\ \theta[/tex]
[tex]\int \int _R (x^2 +y^2 - \beta^2) \ dA[/tex] = 0