Answer:
Step-by-step explanation:
If we consider a triangle with the length of the hypotenuse being equal to 1 and the length of the opposite side = 3x.
However, recall that in a right-angle triangle;
SIne = opposite/hypothenuse
Thus; let the angle facing the opposite be y
Then;
SIn y = 3x/1
Sin y = 3x
Thus, y = arcsin (3x)
Now; to find cos(arcsin 3x)
Recall that:
Cosine = adjacent/hypotenuse
Now, using Pythagoras rule;
[tex]\mathsf{Adjacent \ side = \sqrt{(hypotenuse)^2 -(opposite^2)}}[/tex]
[tex]\mathsf{Adjacent \ side = \sqrt{(1)^2 -(3x^2)}}[/tex]
[tex]\mathsf{Adjacent \ side = \sqrt{1 -9x^2}}[/tex]
cos(arcsin 3x) = cos y = adjacent side/hypotenuse = [tex]\dfrac{\sqrt{1 -9x^2}}{1}[/tex]
cos(arcsin 3x) = [tex]\dfrac{\sqrt{1 -9x^2}}{1}[/tex]