Respuesta :

Answer:

Step-by-step explanation:

If we consider a triangle with the length of the hypotenuse being equal to 1 and the length of the opposite side = 3x.

However, recall that in a right-angle triangle;

SIne = opposite/hypothenuse

Thus; let the angle facing the opposite be y

Then;

SIn y = 3x/1

Sin y = 3x

Thus, y = arcsin (3x)

Now; to find cos(arcsin 3x)

Recall that:

Cosine = adjacent/hypotenuse

Now, using Pythagoras rule;

[tex]\mathsf{Adjacent \ side = \sqrt{(hypotenuse)^2 -(opposite^2)}}[/tex]

[tex]\mathsf{Adjacent \ side = \sqrt{(1)^2 -(3x^2)}}[/tex]

[tex]\mathsf{Adjacent \ side = \sqrt{1 -9x^2}}[/tex]

cos(arcsin 3x) = cos y = adjacent side/hypotenuse = [tex]\dfrac{\sqrt{1 -9x^2}}{1}[/tex]

cos(arcsin 3x) = [tex]\dfrac{\sqrt{1 -9x^2}}{1}[/tex]

ACCESS MORE