A data set includes 40 pulse rates of men, and those pulse rates have a mean of 67.3 beats per minute and a standard deviation of 10.3 beats per minute. Construct a 99% confidence interval estimate of the standard deviation of the pulse rates of men.a) 8.4 beats per minute

Respuesta :

Answer:

The 99% confidence interval of the  standard deviation of the pulse rates of men is  

       [tex][ 7.949 \  \ , \  14.387 ][/tex]

Step-by-step explanation:

From the question we are told that

  The  sample size is  n  =  40

  The mean is  [tex]\= x = 67.3 \ beats \ per \ minute[/tex]

  The standard deviation is  [tex]s = 10.3 \ beats \ per \ minute[/tex]

Generally the degree of freedom is mathematically represented as

     [tex]df = n- 1[/tex]

=>  [tex]df = 40- 1[/tex]

=>  [tex]df = 39[/tex]

From the question we are told the confidence level is  99% , hence the level of significance is    

      [tex]\alpha = (100 - 99 ) \%[/tex]

=>   [tex]\alpha = 0.01[/tex]

Generally from the chi distribution table the critical value  of   at a degree of freedom of is  

   [tex]X^2 _{\frac{\alpha }{2} , 39} =  65.476[/tex]

Generally from the chi distribution table the critical value  of   at a degree of freedom of is  

   [tex]X^2 _{1- \frac{\alpha }{2} , 39} =  19.996[/tex]

Generally the 99% confidence interval of the standard deviation of the pulse rates of men is mathematically represented as

  [tex]s \sqrt{\frac{n- 1}{X^2_{1- \frac{\alpha }{2} , n-1} } }\  \ , \ s \sqrt{\frac{n- 1}{X^2_{\frac{\alpha }{2} , n-1} } }[/tex]

=>  [tex]10.3 \sqrt{\frac{40- 1}{65.476} }\  \ , \ 10.3 \sqrt{\frac{40- 1}{19.996} }[/tex]

=>  [tex][ 7.949 \  \ , \  14.387 ][/tex]

   

ACCESS MORE