A cylinder with a height-to-diameter ratio of unity solidifies in 10 minutes in a sand casting operation. What is the solidification time if the cylinder height is doubled? What is the time if the diameter is doubled? Use n=1.5.

Respuesta :

Answer:

a) 13 mins

b) 18 mins

Explanation:

solidification time = 10 minutes

height-to-diameter ratio = 1

applying the expression for calculating solidification time

t = B  [tex](\frac{V}{A} ) ^n[/tex]  --------- ( 1 )

n = 1.5

B = ?

t = 10 minutes

V = [tex]\frac{\pi d^2}{4} H[/tex]

A = [tex]\frac{\pi d^2}{2} + \pi dH[/tex]

back to equation 1

making B subject of the formula ; B = [tex]\frac{147}{d^{1.5} }[/tex]

a) Determine the solidification time if the cylinder height is doubled

t = B  [tex](\frac{V}{A} ) ^n[/tex]

substitute :  B = [tex]\frac{147}{d^{1.5} }[/tex]  , H = 2D  , V = [tex]\frac{\pi d^2}{4} H[/tex] , A = [tex]\frac{\pi d^2}{2} + \pi dH[/tex] , n = 1.5

therefore ; t ( solidification time when height is doubled ) ≈ 13 mins

b) Determine the time if the diameter is doubled

t = B  [tex](\frac{V}{A} ) ^n[/tex]

substitute ; B = [tex]\frac{147}{h^{1.5} }[/tex] , D = 2H , n = 1.5 , V = [tex]\frac{\pi d^2}{4} H[/tex], A = [tex]\frac{\pi d^2}{2} + \pi dH[/tex]

therefore ; t ( solidification time when diameter is doubled ) ≈ 18 mins