A random sample of 16 ATM transactions at the Last National Bank of Flat Rock revealed a mean transaction time of 2.8 minutes with a standard deviation of 1.2 minutes. The width (in minutes) of the 95 percent confidence interval for the true mean transaction time is plus/minus (to three decimal places):

Respuesta :

Answer:

The  width is  [tex]W = 1.2786[/tex]

Step-by-step explanation:

From the question we are told that

    The  sample size is  n = 16    

      The mean time is  [tex]\= x = 2.8 \ minute[/tex]    

     The standard deviation is  [tex]s = 1.2 \ minutes[/tex]

Generally the degree of freedom is mathematically represented as  

         [tex]df = n - 1[/tex]

=>      [tex]df = 16 - 1[/tex]

=>     [tex]df = 15[/tex]

From the question we are told the confidence level is  95% , hence the level of significance is    

      [tex]\alpha = (100 - 95 ) \%[/tex]

=>   [tex]\alpha = 0.05[/tex]

Generally from the t distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] at a degree of freedom of  df = 15 is  

   [tex]t_{\frac{\alpha }{2} , 15 } =  2.131[/tex]

Generally the margin of error is mathematically represented as  

      [tex]E = t_{\frac{\alpha }{2}, 15 } *  \frac{\sigma }{\sqrt{n} }[/tex]

=>    [tex]E = 2.131  *  \frac{ 1.2 }{\sqrt{16} }[/tex]

=>    [tex]E = 0.6393 [/tex]

Generally the width the confidence 95% confidence interval  

       [tex]W = 2 * E[/tex]

=>    [tex]W = 2 * 0.6393[/tex]

=>    [tex]W = 1.2786[/tex]

     

ACCESS MORE