An architect built a scale model of a shopping mall. On the model, a circular fountain is 21 inches tall and 17.5 inches in diameter. If the actual fountain is to be 6 feet tall, what will its diameter be?

Respuesta :

Answer:

The diameter is 5ft

Step-by-step explanation:

Given

[tex]Height : Diameter = 21\ in: 17.5\ in[/tex]

Required

Determine the diameter when the height is 6ft

Recall that the scale is a ratio of height to diameter;

So 6ft height can be represented on the following scale model;

[tex]Height : Diameter = 6ft : x[/tex]

Convert to fraction

[tex]\frac{Height}{Diameter} = \frac{6}{x}[/tex] ---- (1)

Recall that:

[tex]Height : Diameter = 21\ in: 17.5\ in[/tex]

Convert to fraction

[tex]\frac{Height}{Diameter} = \frac{21 }{17.5}[/tex] ---- (2)

Equate (1) & (2)

[tex]\frac{6}{x}= \frac{21 }{17.5}[/tex]

Cross Multiply

[tex]21 * x = 6 * 17.5[/tex]

[tex]21x = 105[/tex]

[tex]x = 105/21[/tex]

[tex]x = 5[/tex]

Hence, the diameter is 5ft

ACCESS MORE