Answer:
The distance is 338ft
Step-by-step explanation:
Given
Represent distance with s and velocity with v:
When
[tex]s = 200\ ft[/tex]
[tex]v = 50mph[/tex]
Required
Determine the distance when velocity is 65mph
From the question, we understand that:
[tex]s\ \alpha\ v^2[/tex]
Convert to equation
[tex]s\ = kv^2[/tex]
Substitute 200 for s and 50 for v
[tex]200 = k * 50^2[/tex]
[tex]200 = k * 2500[/tex]
Make k the subject:
[tex]k = \frac{200}{2500}[/tex]
[tex]k = \frac{2}{25}[/tex]
To get s when v = 65.
Substitute 65 for v and 2/25 for k in [tex]s\ = kv^2[/tex]
[tex]s = \frac{2}{25} * 65^2[/tex]
[tex]s = \frac{2}{25} * 4225[/tex]
[tex]s = \frac{8450}{25}[/tex]
[tex]s = 338\\[/tex]
Hence, the distance is 338ft