Respuesta :
Answer:
The given statement that value 5 is an upper bound for the zeros of the function f(x) = x⁴ + x³ - 11x² - 9x + 18 will be true.
Step-by-step explanation:
Given
[tex]f\left(x\right)\:=\:x^2\:+\:x^3\:-\:11x^2\:-\:9x\:+\:18[/tex]
We know the rational zeros theorem such as:
if [tex]x=c[/tex] is a zero of the function [tex]f(x)[/tex],
then [tex]f(c) = 0[/tex].
As the [tex]f\left(x\right)\:=\:x^2\:+\:x^3\:-\:11x^2\:-\:9x\:+\:18[/tex] is a polynomial of degree [tex]4[/tex], hence it can not have more than [tex]4[/tex] real zeros.
Let us put certain values in the function,
[tex]f(5) = 448[/tex], [tex]f(4) = 126[/tex], [tex]f(3) = 0[/tex], [tex]f(2) = -20[/tex],
[tex]f(1) = 0[/tex], [tex]f(0) = 18[/tex], [tex]f(-1) = 16[/tex], [tex]f(-2) = 0[/tex], [tex]f(-3) = 0[/tex]
From the above calculation results, we determined that [tex]4[/tex] zeros as
[tex]x = -3, -2, 1,[/tex] and [tex]3[/tex].
Hence, we can check that
[tex]f(x) = (x+3)(x+2)(x-1)(x-3)[/tex]
Observe that,
[tex]for x > 3[/tex], [tex]f(x)[/tex] increases rapidly, so there will be no zeros for [tex]x>3[/tex].
Therefore, the given statement that value 5 is an upper bound for the zeros of the function f(x) = x⁴ + x³ - 11x² - 9x + 18 will be true.