This question involves the concept of the orbital period.
The period of revolution of the second satellite is "3.95 x 10⁶ s".
First, we will consider the orbital period of the first satellite:
[tex]T_1=\sqrt{\frac{4\pi^2 r_1^3}{GM}}[/tex]
where,
Therefore,
[tex]1\ x\ 10^6\ s=\sqrt{\frac{4\pi^2(8\ x\ 10^6\ m)^3}{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(M)}}\\\\M = \frac{4\pi^2(8\ x\ 10^6\ m)^3}{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(1\ x\ 10^6\ s)^2}\\\\M = 3.03\ x\ 10^{20}\ kg[/tex]
Now, we find out the orbital period of the second satellite:
[tex]T_2=\sqrt{\frac{4\pi^2 r_2^3}{GM}}[/tex]
where,
Therefore,
[tex]T_2=\sqrt{\frac{4\pi^2(2\ x\ 10^7\ m)^3}{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(3.03\ x\ 10^{20}\ kg)}}[/tex]
T₂ = 3.95 x 10⁶ s
Learn more about the orbital period here:
https://brainly.com/question/9708010