Use triangle ABC drawn below & only the sides labeled. Find the side of length AB in terms of side a, side b & angle C only. You will need to use both Soh-Cah-Toa and the Pythagorean Theorem to solve for side AB.

Answer:
[tex]AB = \sqrt{a^2 + b^2-2abCos\ C}[/tex]
Step-by-step explanation:
Given:
The above triangle
Required
Solve for AB in terms of a, b and angle C
Considering right angled triangle BOC where O is the point between b-x and x
From BOC, we have that:
[tex]Sin\ C = \frac{h}{a}[/tex]
Make h the subject:
[tex]h = aSin\ C[/tex]
Also, in BOC (Using Pythagoras)
[tex]a^2 = h^2 + x^2[/tex]
Make [tex]x^2[/tex] the subject
[tex]x^2 = a^2 - h^2[/tex]
Substitute [tex]aSin\ C[/tex] for h
[tex]x^2 = a^2 - h^2[/tex] becomes
[tex]x^2 = a^2 - (aSin\ C)^2[/tex]
[tex]x^2 = a^2 - a^2Sin^2\ C[/tex]
Factorize
[tex]x^2 = a^2 (1 - Sin^2\ C)[/tex]
In trigonometry:
[tex]Cos^2C = 1-Sin^2C[/tex]
So, we have that:
[tex]x^2 = a^2 Cos^2\ C[/tex]
Take square roots of both sides
[tex]x= aCos\ C[/tex]
In triangle BOA, applying Pythagoras theorem, we have that:
[tex]AB^2 = h^2 + (b-x)^2[/tex]
Open bracket
[tex]AB^2 = h^2 + b^2-2bx+x^2[/tex]
Substitute [tex]x= aCos\ C[/tex] and [tex]h = aSin\ C[/tex] in [tex]AB^2 = h^2 + b^2-2bx+x^2[/tex]
[tex]AB^2 = h^2 + b^2-2bx+x^2[/tex]
[tex]AB^2 = (aSin\ C)^2 + b^2-2b(aCos\ C)+(aCos\ C)^2[/tex]
Open Bracket
[tex]AB^2 = a^2Sin^2\ C + b^2-2abCos\ C+a^2Cos^2\ C[/tex]
Reorder
[tex]AB^2 = a^2Sin^2\ C +a^2Cos^2\ C + b^2-2abCos\ C[/tex]
Factorize:
[tex]AB^2 = a^2(Sin^2\ C +Cos^2\ C) + b^2-2abCos\ C[/tex]
In trigonometry:
[tex]Sin^2C + Cos^2 = 1[/tex]
So, we have that:
[tex]AB^2 = a^2 * 1 + b^2-2abCos\ C[/tex]
[tex]AB^2 = a^2 + b^2-2abCos\ C[/tex]
Take square roots of both sides
[tex]AB = \sqrt{a^2 + b^2-2abCos\ C}[/tex]