Respuesta :
Answer: 0.111947
Step-by-step explanation:
Let x be a binomial variable that represents the number of people with 20-20 vision.
Given: The probability that an individual has 20-20 vision: p= 0.13
Sample size : n= 24
Binomial probability distribution formula:
[tex]P(X=x)=^nC_xp^x(1-p)^{n-x}[/tex]
The probability of finding five people with 20-20 vision :
[tex]P(X=5)=\ ^{24}C_5(0.13)^5(1-0.13)^{24-5}\\\\=\dfrac{24!}{5!19!}(0.13)^5(0.87)^{19}\\\\=0.111946975387\approx0.111947[/tex]
Hence, the required probability = 0.111947
The probability of finding five people with 20-20 vision is 0.0461.
Binomial Probability:
The formula for the Binomial Probability is,
[tex]P(X = x) =(\frac{n!}{x!(n-x)!} )\times p^x \times (1-p)^{n-x}[/tex]
Given that,
[tex]p = 0.13\\1 - p = 0.87\\n = 72\\x = 5[/tex]
Substituting the given values into the above formula we get,
[tex]P(X = x) =(\frac{n!}{x!(n-x)!} )\times p^x \times (1-p)^{n-x}\\P(X=5)=(\frac{72!}{5!(72-5)!} ) (0.13)^5(0.87)^{72-5}\\P(X=5)=0.0461[/tex]
Learn more about the topic Binomial Probability:
https://brainly.com/question/26592820