Answer:
The simplest form of [tex]\frac{14a^2}{24a}[/tex] is [tex]\mathbf{\frac{7a}{12}}[/tex]
Step-by-step explanation:
We need to write [tex]\frac{14a^2}{24a}[/tex] in simplest form.
We know the exponent rule: [tex]\frac{a^m}{a^n}=a^{m-n}[/tex]
Applying the rule:
[tex]\frac{14a^2}{24a} \\=\frac{14a^{2-1}}{24}\\Since \ 14 \ and \ 24 \ are \ divisible\ by \ 2 \\=\frac{7a^1}{12} \\=\frac{7a}{12}[/tex]
The simplest form of [tex]\frac{14a^2}{24a}[/tex] is [tex]\mathbf{\frac{7a}{12}}[/tex]