What’s the answer to this question if your right I’ll keep giving you points
![Whats the answer to this question if your right Ill keep giving you points class=](https://us-static.z-dn.net/files/dc4/34dc03ca1309c47c4ddbc258876f77f1.png)
[tex]\huge\text{$m\angle O=\boxed{11^{\circ}}$}[/tex]
Since we know that all angles in a triangle add up to [tex]180^{\circ}[/tex], we can solve for [tex]x[/tex] and substitute it back into [tex](x-5)^{\circ}[/tex] to find [tex]m\angle O[/tex].
[tex]\begin{aligned}m\angle N+m\angle O+m\angle P&=180\\(5x-8)+(x-5)+(6x+1)&=180\end{aligned}[/tex]
Remove the parentheses and combine like terms.
[tex]\begin{aligned}5x-8+x-5+6x+1&=180\\(5x+x+6x)+(-8-5+1)&=180\\12x-12&=180\end{aligned}[/tex]
Add [tex]12[/tex] to both sides of the equation.
[tex]\begin{aligned}12x-12&=180\\12x&=192\end{aligned}[/tex]
Divide both sides of the equation by [tex]12[/tex].
[tex]\begin{aligned}x=16\end{aligned}[/tex]
Now that we have the value of [tex]x[/tex], we can substitute it back into [tex](x-5)^{\circ}[/tex] to find [tex]m\angle O[/tex].
[tex]\begin{aligned}m\angle O&=(x-5)\\&=16-5\\&=\boxed{11}\end{aligned}[/tex]