Respuesta :

Ben

[tex]\huge\text{$m\angle O=\boxed{11^{\circ}}$}[/tex]

Since we know that all angles in a triangle add up to [tex]180^{\circ}[/tex], we can solve for [tex]x[/tex] and substitute it back into [tex](x-5)^{\circ}[/tex] to find [tex]m\angle O[/tex].

[tex]\begin{aligned}m\angle N+m\angle O+m\angle P&=180\\(5x-8)+(x-5)+(6x+1)&=180\end{aligned}[/tex]

Remove the parentheses and combine like terms.

[tex]\begin{aligned}5x-8+x-5+6x+1&=180\\(5x+x+6x)+(-8-5+1)&=180\\12x-12&=180\end{aligned}[/tex]

Add [tex]12[/tex] to both sides of the equation.

[tex]\begin{aligned}12x-12&=180\\12x&=192\end{aligned}[/tex]

Divide both sides of the equation by [tex]12[/tex].

[tex]\begin{aligned}x=16\end{aligned}[/tex]

Now that we have the value of [tex]x[/tex], we can substitute it back into [tex](x-5)^{\circ}[/tex] to find [tex]m\angle O[/tex].

[tex]\begin{aligned}m\angle O&=(x-5)\\&=16-5\\&=\boxed{11}\end{aligned}[/tex]

ACCESS MORE