Respuesta :

Answer:

[tex]A^{-1} = \frac{1}{66} \left[\begin{array}{cc}-2&-5\\6&-18\end{array}\right][/tex]

Step-by-step explanation:

Given

[tex]A = \left[\begin{array}{cc}-18&5\\-6&-2\end{array}\right][/tex]

Required

Determine the inverse

A matric is of the form:

[tex]A = \left[\begin{array}{cc}a&b\\c&d\end{array}\right][/tex]

First, we need to calculate the determinant (D)

[tex]D = a * d - b * c[/tex]

By comparison, we have:

[tex]D = (-18 * -2) - (5 * -6)[/tex]

[tex]D = (36) - (-30)[/tex]

[tex]D = 36 +30[/tex]

[tex]D = 66[/tex]

The inverse is then represented as:

[tex]A^{-1} = \frac{1}{D} \left[\begin{array}{cc}d&-b\\-c&a\end{array}\right][/tex]

This gives:

[tex]A^{-1} = \frac{1}{66} \left[\begin{array}{cc}-2&-5\\6&-18\end{array}\right][/tex]

ACCESS MORE