what is the inverse of

Answer:
[tex]A^{-1} = \frac{1}{66} \left[\begin{array}{cc}-2&-5\\6&-18\end{array}\right][/tex]
Step-by-step explanation:
Given
[tex]A = \left[\begin{array}{cc}-18&5\\-6&-2\end{array}\right][/tex]
Required
Determine the inverse
A matric is of the form:
[tex]A = \left[\begin{array}{cc}a&b\\c&d\end{array}\right][/tex]
First, we need to calculate the determinant (D)
[tex]D = a * d - b * c[/tex]
By comparison, we have:
[tex]D = (-18 * -2) - (5 * -6)[/tex]
[tex]D = (36) - (-30)[/tex]
[tex]D = 36 +30[/tex]
[tex]D = 66[/tex]
The inverse is then represented as:
[tex]A^{-1} = \frac{1}{D} \left[\begin{array}{cc}d&-b\\-c&a\end{array}\right][/tex]
This gives:
[tex]A^{-1} = \frac{1}{66} \left[\begin{array}{cc}-2&-5\\6&-18\end{array}\right][/tex]