Answer:
As the point of the intersection of the lines is (7, -12), the solution of the system is
[tex]y=-12,\:x=7[/tex]
Please check the attached graph below.
Step-by-step explanation:
Given the system of the equations
[tex]y=-3x+9;\:y=-x-5[/tex]
Check the attached graph below.
It is clear from the graph that the lines intersect at x =7 and y = -12
so the point of the intersection of the lines is (7, -12)
Hence, the solution of the system is
[tex]y=-12,\:x=7[/tex]
VERIFICATION BY SOLVING THE SYSTEM OF THE EQUATION
Given the system of the equations
[tex]y=-3x+9;\:y=-x-5[/tex]
Solving the system of the equations
[tex]\begin{bmatrix}y=-3x+9\\ y=-x-5\end{bmatrix}[/tex]
[tex]\mathrm{Subsititute\:}y=-x-5[/tex]
[tex]\begin{bmatrix}-x-5=-3x+9\end{bmatrix}[/tex]
Isolate x for [tex]-x-5=-3x+9[/tex]
[tex]-x-5=-3x+9[/tex]
[tex]-x-5+5=-3x+9+5[/tex]
[tex]2x=14[/tex]
[tex]x=7[/tex]
[tex]\mathrm{For\:}y=-x-5[/tex]
[tex]\mathrm{Subsititute\:}x=7[/tex]
[tex]y=-7-5[/tex]
[tex]y=-12[/tex]
[tex]\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}[/tex]
[tex]y=-12,\:x=7[/tex]