Answer:
(x + 1)(x - 1)(x² + 9)
Step-by-step explanation:
Factorise the following:
[tex] \longrightarrow [/tex] x⁴ + 8x² - 9
[tex] \sf x^4 = {(x^2)}^{2}: [/tex]
[tex] \longrightarrow [/tex] [tex] \sf {(x^2)}^{2} + 8x^2 - 9[/tex]
The factors of -9 that sum to 8 are 9 and -1.
So,
[tex] \longrightarrow [/tex] [tex] \sf {(x^2)}^{2} + (9 - 1)x^2 - 9[/tex]
[tex] \longrightarrow [/tex] [tex] \sf {(x^2)}^{2} + 9x^2 - x^2 - 9[/tex]
[tex] \longrightarrow [/tex] x²(x² + 9) - 1(x² + 9)
[tex] \longrightarrow [/tex] (x² - 1)(x² + 9)
x² - 1 = x² - 1²:
(x² - 1²)(x² + 9)
Factor the difference of two squares.
x² - 1² = (x + 1)(x - 1):
[tex] \longrightarrow [/tex] (x + 1)(x - 1)(x² + 9)