Please help!!!
Identify the equation in point-slope form for the perpendicular bisector of the segment with endpoints B(6,9) and C(8,−7).

Answers are one of the following

1.y − 1 = −8(x − 7)
2.y − 7 = 8(x − 1)
3.y−1=−18(x−7)
4.y−1=18(x−7)

Respuesta :

Answer:

[tex]y-1=\frac{1}{8}\left(x-7\right)[/tex] is the equation in point-slope form for the perpendicular bisector of the segment with endpoints B(6,9) and C(8,−7).

Step-by-step explanation:

The endpoints:

  • B(6,9)
  • C(8,−7)

Calculating the Midpoint M of BC:

[tex]\mathrm{Midpoint\:of\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \left(\frac{x_2+x_1}{2},\:\:\frac{y_2+y_1}{2}\right)[/tex]

[tex]\left(x_1,\:y_1\right)=\left(6,\:9\right),\:\left(x_2,\:y_2\right)=\left(8,\:-7\right)[/tex]

The Midpoint M of BC [tex]=\left(\frac{8+6}{2},\:\frac{-7+9}{2}\right)[/tex]

                                     [tex]=\left(7,\:1\right)[/tex]

Calculating the slope of BC:

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(6,\:9\right),\:\left(x_2,\:y_2\right)=\left(8,\:-7\right)[/tex]

[tex]m=\frac{-7-9}{8-6}[/tex]

[tex]m=-8[/tex]

Given a line with slope [tex]m[/tex] then the slope of a

line  perpendicular to it is:

[tex]m_{prependicular}=-\frac{1}{m}=-\frac{1}{-8}=\frac{1}{8}[/tex]

Equation of line using point-slope form

[tex]y-y_1=m\left(x-x_1\right)[/tex]

[tex]y-1=\frac{1}{8}\left(x-7\right)[/tex]        

     

Therefore, [tex]y-1=\frac{1}{8}\left(x-7\right)[/tex] is the equation in point-slope form for the perpendicular bisector of the segment with endpoints B(6,9) and C(8,−7).                                          

RELAXING NOICE
Relax