Answer:
[tex]y-1=\frac{1}{8}\left(x-7\right)[/tex] is the equation in point-slope form for the perpendicular bisector of the segment with endpoints B(6,9) and C(8,−7).
Step-by-step explanation:
The endpoints:
Calculating the Midpoint M of BC:
[tex]\mathrm{Midpoint\:of\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \left(\frac{x_2+x_1}{2},\:\:\frac{y_2+y_1}{2}\right)[/tex]
[tex]\left(x_1,\:y_1\right)=\left(6,\:9\right),\:\left(x_2,\:y_2\right)=\left(8,\:-7\right)[/tex]
The Midpoint M of BC [tex]=\left(\frac{8+6}{2},\:\frac{-7+9}{2}\right)[/tex]
[tex]=\left(7,\:1\right)[/tex]
Calculating the slope of BC:
[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\left(x_1,\:y_1\right)=\left(6,\:9\right),\:\left(x_2,\:y_2\right)=\left(8,\:-7\right)[/tex]
[tex]m=\frac{-7-9}{8-6}[/tex]
[tex]m=-8[/tex]
Given a line with slope [tex]m[/tex] then the slope of a
line perpendicular to it is:
[tex]m_{prependicular}=-\frac{1}{m}=-\frac{1}{-8}=\frac{1}{8}[/tex]
Equation of line using point-slope form
[tex]y-y_1=m\left(x-x_1\right)[/tex]
[tex]y-1=\frac{1}{8}\left(x-7\right)[/tex]
Therefore, [tex]y-1=\frac{1}{8}\left(x-7\right)[/tex] is the equation in point-slope form for the perpendicular bisector of the segment with endpoints B(6,9) and C(8,−7).