Answer:
[tex]x^2 + 15x - 60 = 0[/tex]
The actual dimension is 18.28 by 3.28
Step-by-step explanation:
Given
Dimension:
[tex](x + 15)\ by\ x[/tex]
[tex]Area = 60in^2[/tex]
Required
Determine the quadratic equation and get the possible values of x
Solving (a): Quadratic Equation.
The cardboard is rectangular in shape.
Hence, Area is calculated as thus:
[tex]Area = Length * Width[/tex]
[tex]60= (x + 15) * x[/tex]
Open Bracket
[tex]60= x^2 + 15x[/tex]
Subtract 60 from both sides
[tex]x^2 + 15x - 60 = 0[/tex]
Hence, the above represents the quadratic equation
Solving (b): The actual dimension
First, we need to solve for x
This can be solved using quadratic formula:
[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
Where
[tex]a = 1[/tex]
[tex]b = 15[/tex]
[tex]c = -60[/tex]
So:
[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
[tex]x = \frac{-15 \± \sqrt{15^2 - 4*1*-60}}{2*1}[/tex]
[tex]x = \frac{-15 \± \sqrt{225 + 240}}{2}[/tex]
[tex]x = \frac{-15 \± \sqrt{465}}{2}[/tex]
[tex]x = \frac{-15 \± \21.56}{2}[/tex]
Split:
[tex]x = \frac{-15 + 21.56}{2}[/tex] or [tex]x = \frac{-15 - 21.56}{2}[/tex]
[tex]x = \frac{6.56}{2}[/tex] or [tex]x = \frac{-36.36}{2}[/tex]
[tex]x = 3.28[/tex] or [tex]x = -18.18[/tex]
But length can't be negative;
So:
[tex]x = 3.28[/tex]
The actual dimensions: [tex](x + 15)\ by\ x[/tex] is
[tex]Length =3.28 +15[/tex]
[tex]Length =18.28[/tex]
[tex]Width = x[/tex]
[tex]Width =3.28[/tex]
The actual dimension is 18.28 by 3.28