A piece of cardboard has the dimensions (x + 15) inches by (x) inches with the area of 60 in 2 . Write the quadratic equation that represents this and show your work. Then find the possible value(s) for x, and find the actual dimensions of the postcard.

Respuesta :

Answer:

[tex]x^2 + 15x - 60 = 0[/tex]

The actual dimension is 18.28 by 3.28

Step-by-step explanation:

Given

Dimension:

[tex](x + 15)\ by\ x[/tex]

[tex]Area = 60in^2[/tex]

Required

Determine the quadratic equation and get the possible values of x

Solving (a): Quadratic Equation.

The cardboard is rectangular in shape.

Hence, Area is calculated as thus:

[tex]Area = Length * Width[/tex]

[tex]60= (x + 15) * x[/tex]

Open Bracket

[tex]60= x^2 + 15x[/tex]

Subtract 60 from both sides

[tex]x^2 + 15x - 60 = 0[/tex]

Hence, the above represents the quadratic equation

Solving (b): The actual dimension

First, we need to solve for x

This can be solved using quadratic formula:

[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

Where

[tex]a = 1[/tex]

[tex]b = 15[/tex]

[tex]c = -60[/tex]

So:

[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]x = \frac{-15 \± \sqrt{15^2 - 4*1*-60}}{2*1}[/tex]

[tex]x = \frac{-15 \± \sqrt{225 + 240}}{2}[/tex]

[tex]x = \frac{-15 \± \sqrt{465}}{2}[/tex]

[tex]x = \frac{-15 \± \21.56}{2}[/tex]

Split:

[tex]x = \frac{-15 + 21.56}{2}[/tex] or [tex]x = \frac{-15 - 21.56}{2}[/tex]

[tex]x = \frac{6.56}{2}[/tex] or [tex]x = \frac{-36.36}{2}[/tex]

[tex]x = 3.28[/tex] or [tex]x = -18.18[/tex]

But length can't be negative;

So:

[tex]x = 3.28[/tex]

The actual dimensions: [tex](x + 15)\ by\ x[/tex] is

[tex]Length =3.28 +15[/tex]

[tex]Length =18.28[/tex]

[tex]Width = x[/tex]

[tex]Width =3.28[/tex]

The actual dimension is 18.28 by 3.28

RELAXING NOICE
Relax