Complete the table of values for this absolute value function. Then use the drawing tool(s) to graph the function. F(x)-2|x+1|-1

Answer:
Please check the explanation!
Step-by-step explanation:
Given the equation
[tex]f\left(x\right)=-2|x+1|-1[/tex]
As some of the absolute rules are:
NOW, let us solve!
Let us substitute all the table values
Putting x = -4
[tex]y=-2\left|-4+1\right|-1[/tex] ∵[tex]\mathrm{Apply\:absolute\:rule}:\quad \left|a\right|=a,\:a\ge 0[/tex]
[tex]y=-6-1[/tex]
[tex]y=-7[/tex]
So, when x = -4, then y = -7
Putting x = -3
[tex]y=-2|-3+1|-1\:[/tex]
[tex]y=-4-1[/tex]
[tex]y=-5[/tex]
when x = -3, then y = -5
Putting x = -2
[tex]y=-2\left|-2+1\right|-1[/tex]
[tex]y=-2-1[/tex]
[tex]y=-3[/tex]
when x = -2, then y = -3
Putting x = -1
[tex]y=-2\left|-1+1\right|-1[/tex]
[tex]y=-0-1[/tex]
[tex]y=-1[/tex]
when x = -1, then y = -1
Putting x = 0
[tex]y=-2\left|0+1\right|-1[/tex]
[tex]y=-2-1[/tex]
[tex]y=-3[/tex]
when x = 0, then y = -3
Putting x = 1
[tex]y=-2\left|1+1\right|-1[/tex]
[tex]y=-4-1[/tex]
[tex]y=-5[/tex]
when x = 1, then y = -5
The graph is also attached below.