Respuesta :

Answer:

The equation in the standard form is

[tex]y+2x=5[/tex]

Step-by-step explanation:

Given the points

  • (6, -7)
  • (4, -3)

Finding the slope between (6, -7) and (4, -3)

[tex]\left(x_1,\:y_1\right)=\left(6,\:-7\right),\:\left(x_2,\:y_2\right)=\left(4,\:-3\right)[/tex]

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\frac{-3-\left(-7\right)}{4-6}[/tex]

[tex]m=-2[/tex]

As the point-slope form is defined as

[tex]y-y_1=m\left(x-x_1\right)[/tex]

substituting the values m = -2 and the point (6, -7)

[tex]y-y_1=m\left(x-x_1\right)[/tex]

[tex]y-\left(-7\right)=-2\left(x-6\right)[/tex]

Writing the equation in the standard form form

As we know that the equation in the standard form is

[tex]Ax+By=C[/tex]

where x and y are variables and A, B and C are constants

converting the equation in standard form

[tex]y-\left(-7\right)=-2\left(x-6\right)[/tex]

[tex]y+7=-2\left(x-6\right)[/tex]

subtract 7 from both sides

[tex]y+7-7=-2\left(x-6\right)-7[/tex]

[tex]y=-2x+5[/tex]

[tex]y+2x=5[/tex]

Therefore, the equation in the standard form is

[tex]y+2x=5[/tex]

ACCESS MORE