Respuesta :

Given:

The function is

[tex]f(x)=\dfrac{4x}{x^2-16}[/tex]

To find:

The asymptotes and zero of the function.

Solution:

We have,

[tex]f(x)=\dfrac{4x}{x^2-16}[/tex]

For zeroes, f(x)=0.

[tex]\dfrac{4x}{x^2-16}=0[/tex]

[tex]4x=0[/tex]

[tex]x=0[/tex]

Therefore, zero of the function is 0.

For vertical asymptote equate the denominator of the function equal to 0.

[tex]x^2-16=0[/tex]

[tex]x^2=16[/tex]

Taking square root on both sides, we get

[tex]x=\pm \sqrt{16}[/tex]

[tex]x=\pm 4[/tex]

So, vertical asymptotes are x=-4 and x=4.

Since degree of denominator is greater than degree of numerator, therefore, the horizontal asymptote is y=0.