An Internet service provider sampled 540 customers and found that 75 of them experienced an interruption in high-speed service during the previous month. (a) Find a point estimate for the population proportion of all customers who experienced an interruption. DO NOT ROUND the answer. (b) Construct a 90% confidence interval for the proportion of all customers who experienced an interruption. Round your answer to 3 decimal places. (c) Estimate the sample size needed so that a 95% confidence interval will have a margin of error of 0.03.

Respuesta :

Answer:

a) point estimate for the population proportion of all customers who experienced an interruption

E = 0.029

b)

90% confidence interval for the proportion of all customers who experienced an interruption

(0.11441 , 0.16319)

C)

Size of the sample 'n' = 509

Step-by-step explanation:

Step(i):-

a)

An Internet service provider sampled 540 customers and found that 75 of them experienced an interruption in high-speed service during the previous month.

Sample proportion

                           [tex]p = \frac{x}{n} = \frac{75}{540} = 0.1388[/tex]

The point estimate of all customers who experienced an interruption

                         [tex]E = \frac{Z_{\alpha }\sqrt{p(1-p)} }{\sqrt{n} }[/tex]

  Level of significance

                          Z₀.₀₅ = 1.96

                         [tex]E = \frac{1.96\sqrt{0.138(1-0.1388)} }{\sqrt{540} }[/tex]

                         E  =  0.029

b)

90% confidence interval for the proportion of all customers who experienced an interruption

[tex]( p - Z_{0.10} \sqrt{\frac{p(1-p)}{n} } ,p + Z_{0.10} \sqrt{\frac{p(1-p)}{n} })[/tex]

[tex]( 0.1388 -1.645 \sqrt{\frac{0.1388(1-0.1388)}{540} } ,0.1388 + 1.645 \sqrt{\frac{0.1388(1-0.1388)}{540} })[/tex]

( 0.1388 - 0.02439 , 0.1388 + 0.02439)

(0.11441 , 0.16319)

c)

Margin of error

                   [tex]M.E = \frac{Z_{0.05} \sqrt{p(1-p)} }{\sqrt{n} }[/tex]

                   [tex]0.03 = \frac{1.96 \sqrt{0.1388(1-0.1388)} }{\sqrt{n} }[/tex]

                   √n = 22.58

Squaring on both sides, we get

                 n = 509

ACCESS MORE