Answer:
[tex]t = 11.085[/tex]
Step-by-step explanation:
The expression is given as:
[tex]h=-16t^2+24t+1700[/tex]
Required
Determine how long it will hit the ground
When the pebble is on the ground, this implies that h = 0
So, we have that:
[tex]h=-16t^2+24t+1700[/tex] becomes
[tex]0=-16t^2+24t+1700[/tex]
Reorder
[tex]-16t^2+24t+1700 = 0[/tex]
Multiply through by -1
[tex]16t^2-24t-1700 = 0[/tex]
Solve using quadratic formula [tex]ax^2 + bx + c = 0[/tex]:
[tex]t = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
Where
[tex]a = 16[/tex] [tex]b = -24[/tex] [tex]c = -1700[/tex]
So, we have:
[tex]t = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
[tex]t = \frac{-(-24) \± \sqrt{(-24)^2 - 4*16*(-1700)}}{2*16}[/tex]
[tex]t = \frac{24 \± \sqrt{576 + 108800}}{32}[/tex]
[tex]t = \frac{24 \± \sqrt{109376}}{32}[/tex]
[tex]t = \frac{24 \± 330.72}{32}[/tex]
[tex]t = \frac{24 + 330.72}{32}[/tex] or [tex]t = \frac{24 - 330.72}{32}[/tex]
[tex]t = \frac{354.72}{32}[/tex] or [tex]t = \frac{-306.72}{32}[/tex]
[tex]t = 11.085[/tex] or [tex]t = -9.585[/tex]
But time can't be negative.
So: [tex]t = 11.085[/tex]
Hence, it will take 11.085 seconds to hit the ground