A waterfall has a height of 1700 feet. A pebble is thrown upward from the top of the falls with an initial velocity of  feet per second. The height of the pebble h in feet after t seconds is given by the equation h=-16t^2+24t+1700 . How long after the pebble is thrown will it hit the​ ground?


PLEASE HELPPPPP

Respuesta :

Answer:

[tex]t = 11.085[/tex]

Step-by-step explanation:

The expression is given as:

[tex]h=-16t^2+24t+1700[/tex]

Required

Determine how long it will hit the ground

When the pebble is on the ground, this implies that h = 0

So, we have that:

[tex]h=-16t^2+24t+1700[/tex] becomes

[tex]0=-16t^2+24t+1700[/tex]

Reorder

[tex]-16t^2+24t+1700 = 0[/tex]

Multiply through by -1

[tex]16t^2-24t-1700 = 0[/tex]

Solve using quadratic formula [tex]ax^2 + bx + c = 0[/tex]:

[tex]t = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

Where

[tex]a = 16[/tex]   [tex]b = -24[/tex]    [tex]c = -1700[/tex]

So, we have:

[tex]t = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]t = \frac{-(-24) \± \sqrt{(-24)^2 - 4*16*(-1700)}}{2*16}[/tex]

[tex]t = \frac{24 \± \sqrt{576 + 108800}}{32}[/tex]

[tex]t = \frac{24 \± \sqrt{109376}}{32}[/tex]

[tex]t = \frac{24 \± 330.72}{32}[/tex]

[tex]t = \frac{24 + 330.72}{32}[/tex] or [tex]t = \frac{24 - 330.72}{32}[/tex]

[tex]t = \frac{354.72}{32}[/tex] or [tex]t = \frac{-306.72}{32}[/tex]

[tex]t = 11.085[/tex] or [tex]t = -9.585[/tex]

But time can't be negative.

So: [tex]t = 11.085[/tex]

Hence, it will take 11.085 seconds to hit the ground