Respuesta :

Answer:

           f(x) = -2 (x - 3)² + 6

Step-by-step explanation:

The vertex form of the equation of the parabola with vertex (h, k)  is:

f(x) = a(x - h)² + k

so the equation of parabola with the vertex (3, 6) is

f(x) = a(x - 3)² + 6  

passes through the point (4, 4) means: if x=4 then f(x)=4

4 = a(4 - 3)² + 6  

4 -6 = a(1)² + 6 -6

-2 = a

Therefore the equation of parabla is:

                                  f(x) = -2 (x - 3)² + 6  

The vertex of a parabola is the maximum or the minimum point on the parabola.

The equation of the parabola is: [tex]\mathbf{y = -2(x -3)^2 + 6}[/tex]

The given parameters are:

[tex]\mathbf{Point = (x,y) =(4,4)}[/tex]

[tex]\mathbf{Vertex = (h,k) =(3,6)}[/tex]

The equation of parabola is:

[tex]\mathbf{y = a(x - h)^2 + k}[/tex]

Substitute values for x, y, h and k

[tex]\mathbf{4 = a(4 - 3)^2 + 6}[/tex]

[tex]\mathbf{4 = a(1)^2 + 6}[/tex]

[tex]\mathbf{4 = a + 6}[/tex]

Subtract 6 from both sides

[tex]\mathbf{a = -2}[/tex]

Substitute values for h, k and a in [tex]\mathbf{y = a(x - h)^2 + k}[/tex]

[tex]\mathbf{y = -2(x -3)^2 + 6}[/tex]

Hence, the equation of the parabola is:

[tex]\mathbf{y = -2(x -3)^2 + 6}[/tex]

Read more about parabolas at:

https://brainly.com/question/4074088

ACCESS MORE