Respuesta :
Answer:
f(x) = -2 (x - 3)² + 6
Step-by-step explanation:
The vertex form of the equation of the parabola with vertex (h, k) is:
f(x) = a(x - h)² + k
so the equation of parabola with the vertex (3, 6) is
f(x) = a(x - 3)² + 6
passes through the point (4, 4) means: if x=4 then f(x)=4
4 = a(4 - 3)² + 6
4 -6 = a(1)² + 6 -6
-2 = a
Therefore the equation of parabla is:
f(x) = -2 (x - 3)² + 6
The vertex of a parabola is the maximum or the minimum point on the parabola.
The equation of the parabola is: [tex]\mathbf{y = -2(x -3)^2 + 6}[/tex]
The given parameters are:
[tex]\mathbf{Point = (x,y) =(4,4)}[/tex]
[tex]\mathbf{Vertex = (h,k) =(3,6)}[/tex]
The equation of parabola is:
[tex]\mathbf{y = a(x - h)^2 + k}[/tex]
Substitute values for x, y, h and k
[tex]\mathbf{4 = a(4 - 3)^2 + 6}[/tex]
[tex]\mathbf{4 = a(1)^2 + 6}[/tex]
[tex]\mathbf{4 = a + 6}[/tex]
Subtract 6 from both sides
[tex]\mathbf{a = -2}[/tex]
Substitute values for h, k and a in [tex]\mathbf{y = a(x - h)^2 + k}[/tex]
[tex]\mathbf{y = -2(x -3)^2 + 6}[/tex]
Hence, the equation of the parabola is:
[tex]\mathbf{y = -2(x -3)^2 + 6}[/tex]
Read more about parabolas at:
https://brainly.com/question/4074088