Respuesta :

Answer:

Perpendicular

Step-by-step explanation:

Given

[tex]A = (-4, 8)[/tex]

[tex]B = (4, 10)[/tex]

[tex]C = (1, 1)[/tex]

[tex]D = (-2, 13)[/tex]

Required

Is AB and CD parallel?

First, we need to calculate the slope (m) of AB and CD

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

For AB:

[tex]A (x_1,y_1)= (-4, 8)[/tex]

[tex]B(x_2,y_2) = (4, 10)[/tex]

So:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{10 - 8}{4 - (-4)}[/tex]

[tex]m = \frac{10 - 8}{4 +4}[/tex]

[tex]m = \frac{2}{8}[/tex]

[tex]m = \frac{1}{4}[/tex]

For CD:

[tex]C(x_1,y_1) = (1, 1)[/tex]

[tex]D(x_2,y_2) = (-2, 13)[/tex]

So:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{13 - 1}{-2 - 1}[/tex]

[tex]m = \frac{12}{-3}[/tex]

[tex]m = -4[/tex]

For Lines to be parallel, the slope must be equal:

i.e. [tex]m_1 = m_2[/tex]

This condition is not true because:

[tex]\frac{1}{4} \neq -4[/tex]

For Lines to be perpendicular, the slope must be:

[tex]m_1 = -\frac{1}{m_2}[/tex]

This implies:

[tex]\frac{1}{4} = -\frac{1}{-4}[/tex]

[tex]\frac{1}{4} = \frac{-1}{-4}[/tex]

[tex]\frac{1}{4} = \frac{1}{4}[/tex]

Hence, the lines are perpendicular

ACCESS MORE