Respuesta :

Space

Answer:

[tex]\displaystyle \lim_{x \to 0^+} x^\big{\sqrt{x}} = 1[/tex]

General Formulas and Concepts:

Algebra II

  • Natural logarithms ln and Euler's number e
  • Logarithmic Property [Exponential]:                                                             [tex]\displaystyle log(a^b) = b \cdot log(a)[/tex]

Calculus

Limits

  • Right-Side Limit:                                                                                             [tex]\displaystyle \lim_{x \to c^+} f(x)[/tex]
  • Left-Side Limit:                                                                                               [tex]\displaystyle \lim_{x \to c^-} f(x)[/tex]

Limit Rule [Variable Direct Substitution]:                                                             [tex]\displaystyle \lim_{x \to c} x = c[/tex]

L’Hopital’s Rule:                                                                                                     [tex]\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}[/tex]

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Step-by-step explanation:

We are given the following limit:

[tex]\displaystyle \lim_{x \to 0^+} x^\big{\sqrt{x}}[/tex]

Substituting in x = 0 using the limit rule, we have an indeterminate form:

[tex]\displaystyle \lim_{x \to 0^+} x^\big{\sqrt{x}} = 0^0[/tex]

We need to rewrite this indeterminate form to another form to use L'Hopital's Rule. Let's set our limit as a function:

[tex]\displaystyle y = \lim_{x \to 0^+} x^\big{\sqrt{x}}[/tex]

Take the ln of both sides:

[tex]\displaystyle lny = ln \Big( \lim_{x \to 0^+} x^\big{\sqrt{x}} \Big)[/tex]

Rewrite the limit by including the ln in the inside:

[tex]\displaystyle lny = \lim_{x \to 0^+} ln \big( x^\big{\sqrt{x}} \big)[/tex]

Rewrite the limit once more using logarithmic properties:

[tex]\displaystyle lny = \lim_{x \to 0^+} \sqrt{x}ln(x)[/tex]

Rewrite the limit again:

[tex]\displaystyle lny = \lim_{x \to 0^+} \frac{ln(x)}{\frac{1}{\sqrt{x}}}[/tex]

Substitute in x = 0 again using the limit rule, we have an indeterminate form in which we can use L'Hopital's Rule:

[tex]\displaystyle \lim_{x \to 0^+} \frac{ln(x)}{\frac{1}{\sqrt{x}}} = \frac{\infty}{\infty}[/tex]

Apply L'Hopital's Rule:

[tex]\displaystyle \lim_{x \to 0^+} \frac{ln(x)}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{2x^\big{\frac{3}{2}}}}[/tex]

Simplify:

[tex]\displaystyle \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{2x^\big{\frac{3}{2}}}} = \lim_{x \to 0^+} -2\sqrt{x}[/tex]

Redefine the limit:

[tex]\displaystyle lny = \lim_{x \to 0^+} -2\sqrt{x}[/tex]

Substitute in x = 0 once more using the limit rule:

[tex]\displaystyle \lim_{x \to 0^+} -2\sqrt{x} = -2\sqrt{0}[/tex]

Evaluating it, we have:

[tex]\displaystyle \lim_{x \to 0^+} -2\sqrt{x} = 0[/tex]

Substitute in the limit value:

[tex]\displaystyle lny = 0[/tex]

e both sides:

[tex]\displaystyle e^\big{lny} = e^\big{0}[/tex]

Simplify:

[tex]\displaystyle y = 1[/tex]

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit:  Limits

ACCESS MORE