Respuesta :

Given:

In figure, ΔDEF has two equal angles ∠E and ∠F.

[tex]DE=40,EF=6x+10,DF=8x-24[/tex]

To find:

The incorrect statement from the given options.

Solution:

In triangle DEF,

[tex]\angle E=\angle F[/tex]            (Given)

[tex]DF=DE[/tex]            (Base angles are equal, so it is an isosceles triangle)

[tex]8x-24=40[/tex]

[tex]8x=40+24[/tex]

[tex]8x=64[/tex]

Divide both sides by 8.

[tex]x=8[/tex]

Now,

[tex]DE=DF=40[/tex]        (Isosceles triangle)

[tex]EF=6x+10[/tex]

[tex]EF=6(8)+10[/tex]

[tex]EF=48+10[/tex]

[tex]EF=58[/tex]

Therefore, x=8, FE=58, DE =40 and DF = 40.

Hence, the incorrect statement is in option B. So, option B is correct.

An isosceles triangle has two equal opposites sides

The correct statements are

A. FE = 58

A. FE = 58C. x = 8

A. FE = 58C. x = 8D. DF = 40

incorrect statement is

B. DE = 58

Given:

Side DE = 40

Side FE = 6x + 10

Side DF = 8x - 24

Recall,

DF = DE

8x - 24 = 40

8x = 40 + 24

8x = 64

x = 64 / 8

x = 8

Therefore,

Side FE = 6x + 10

= 6(8) + 10

= 48 + 10

= 58

Side DF = 8x - 24

= 8(8) - 24

= 64 - 24

= 40

Read more:

https://brainly.com/question/13664166

RELAXING NOICE
Relax