Answer:
971.9 ft
Step-by-step explanation:
[tex]\theta_1= 64^{\circ}[/tex]
[tex]\theta_2=36^{\circ}[/tex]
b = Base = 350 ft
[tex]\tan\theta_1=\dfrac{P_1}{b}\\\Rightarrow P_1=b\tan\theta_1\\\Rightarrow P_1=350\times \tan64^{\circ}[/tex]
[tex]\tan\theta_2=\dfrac{P_2}{b}\\\Rightarrow P_2=b\tan\theta_2\\\Rightarrow P_2=350\times \tan36^{\circ}[/tex]
Height of Macy's is given by
[tex]P_1+P_2=350\times \tan64^{\circ}+350\times \tan36^{\circ}\\\Rightarrow P_1+P_2=350(\tan64^{\circ}+\tan36^{\circ})\\\Rightarrow P_1+P_2=971.9\ \text{ft}[/tex]
The height of Macy's is 971.9 ft