If it exists, solve for the inverse function of each of the following:
1. f(x) = 25x - 18
6. gala? +84 - 7
7. 10) = (b + 6) (6-2)
3. A(7)=-=-
4. f(x)=x
9. h(c) = V2c +2
+30
10. f(x) =
5. f(a) = a +8
ox-1
2. 9(x) = -1
2x+17
8. () - 2*​

Respuesta :

Answer:

The solution is too long. So, I included them in the explanation

Step-by-step explanation:

This question has missing details. However, I've corrected each question before solving them

Required: Determine the inverse

1:

[tex]f(x) = 25x - 18[/tex]

Replace f(x) with y

[tex]y = 25x - 18[/tex]

Swap y & x

[tex]x = 25y - 18[/tex]

[tex]x + 18 = 25y - 18 + 18[/tex]

[tex]x + 18 = 25y[/tex]

Divide through by 25

[tex]\frac{x + 18}{25} = y[/tex]

[tex]y = \frac{x + 18}{25}[/tex]

Replace y with f'(x)

[tex]f'(x) = \frac{x + 18}{25}[/tex]

2. [tex]g(x) = \frac{12x - 1}{7}[/tex]

Replace g(x) with y

[tex]y = \frac{12x - 1}{7}[/tex]

Swap y & x

[tex]x = \frac{12y - 1}{7}[/tex]

[tex]7x = 12y - 1[/tex]

Add 1 to both sides

[tex]7x +1 = 12y - 1 + 1[/tex]

[tex]7x +1 = 12y[/tex]

Make y the subject

[tex]y = \frac{7x + 1}{12}[/tex]

[tex]g'(x) = \frac{7x + 1}{12}[/tex]

3: [tex]h(x) = -\frac{9x}{4} - \frac{1}{3}[/tex]

Replace h(x) with y

[tex]y = -\frac{9x}{4} - \frac{1}{3}[/tex]

Swap y & x

[tex]x = -\frac{9y}{4} - \frac{1}{3}[/tex]

Add [tex]\frac{1}{3}[/tex] to both sides

[tex]x + \frac{1}{3}= -\frac{9y}{4} - \frac{1}{3} + \frac{1}{3}[/tex]

[tex]x + \frac{1}{3}= -\frac{9y}{4}[/tex]

Multiply through by -4

[tex]-4(x + \frac{1}{3})= -4(-\frac{9y}{4})[/tex]

[tex]-4x - \frac{4}{3}= 9y[/tex]

Divide through by 9

[tex](-4x - \frac{4}{3})/9= y[/tex]

[tex]-4x * \frac{1}{9} - \frac{4}{3} * \frac{1}{9} = y[/tex]

[tex]\frac{-4x}{9} - \frac{4}{27}= y[/tex]

[tex]y = \frac{-4x}{9} - \frac{4}{27}[/tex]

[tex]h'(x) = \frac{-4x}{9} - \frac{4}{27}[/tex]

4:

[tex]f(x) = x^9[/tex]

Replace f(x) with y

[tex]y = x^9[/tex]

Swap y with x

[tex]x = y^9[/tex]

Take 9th root

[tex]x^{\frac{1}{9}} = y[/tex]

[tex]y = x^{\frac{1}{9}}[/tex]

Replace y with f'(x)

[tex]f'(x) = x^{\frac{1}{9}}[/tex]

5:

[tex]f(a) = a^3 + 8[/tex]

Replace f(a) with y

[tex]y = a^3 + 8[/tex]

Swap a with y

[tex]a = y^3 + 8[/tex]

Subtract 8

[tex]a - 8 = y^3 + 8 - 8[/tex]

[tex]a - 8 = y^3[/tex]

Take cube root

[tex]\sqrt[3]{a-8} = y[/tex]

[tex]y = \sqrt[3]{a-8}[/tex]

Replace y with f'(a)

[tex]f'(a) = \sqrt[3]{a-8}[/tex]

6:

[tex]g(a) = a^2 + 8a- 7[/tex]

Replace g(a) with y

[tex]y = a^2 + 8a - 7[/tex]

Swap positions of y and a

[tex]a = y^2 + 8y - 7[/tex]

[tex]y^2 + 8y - 7 - a = 0[/tex]

Solve using quadratic formula:

[tex]y = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]a = 1[/tex] ; [tex]b = 8[/tex]; [tex]c = -7 - a[/tex]

[tex]y = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex] becomes

[tex]y = \frac{-8 \±\sqrt{8^2 - 4 * 1 * (-7-a)}}{2 * 1}[/tex]

[tex]y = \frac{-8 \±\sqrt{64 + 28 + 4a}}{2 * 1}[/tex]

[tex]y = \frac{-8 \±\sqrt{92 + 4a}}{2 * 1}[/tex]

[tex]y = \frac{-8 \±\sqrt{92 + 4a}}{2 }[/tex]

Factorize

[tex]y = \frac{-8 \±\sqrt{4(23 + a)}}{2 }[/tex]

[tex]y = \frac{-8 \±2\sqrt{(23 + a)}}{2 }[/tex]

[tex]y = -4 \±\sqrt{(23 + a)}[/tex]

[tex]g'(a) = -4 \±\sqrt{(23 + a)}[/tex]

7:

[tex]f(b) = (b + 6)(b - 2)[/tex]

Replace f(b) with y

[tex]y = (b + 6)(b - 2)[/tex]

Swap y and b

[tex]b = (y + 6)(y - 2)[/tex]

Open Brackets

[tex]b = y^2 + 6y - 2y - 12[/tex]

[tex]b = y^2 + 4y - 12[/tex]

[tex]y^2 + 4y - 12 - b = 0[/tex]

Solve using quadratic formula:

[tex]y = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]a = 1[/tex] ; [tex]b = 4[/tex]; [tex]c = -12 - b[/tex]

[tex]y = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex] becomes

[tex]y = \frac{-4\±\sqrt{4^2 - 4 * 1 * (-12-b)}}{2*1}[/tex]

[tex]y = \frac{-4\±\sqrt{4^2 - 4 *(-12-b)}}{2}[/tex]

Factorize:

[tex]y = \frac{-4\±\sqrt{4(4 - (-12-b))}}{2}[/tex]

[tex]y = \frac{-4\±2\sqrt{(4 - (-12-b))}}{2}[/tex]

[tex]y = \frac{-4\±2\sqrt{(4 +12+b)}}{2}[/tex]

[tex]y = \frac{-4\±2\sqrt{16+b}}{2}[/tex]

[tex]y = -2\±\sqrt{16+b}[/tex]

Replace y with f'(b)

[tex]f'(b) = -2\±\sqrt{16+b}[/tex]

8:

[tex]h(x) = \frac{2x+17}{3x+1}[/tex]

Replace h(x) with y

[tex]y = \frac{2x+17}{3x+1}[/tex]

Swap x and y

[tex]x = \frac{2y+17}{3y+1}[/tex]

Cross Multiply

[tex](3y + 1)x = 2y + 17[/tex]

[tex]3yx + x = 2y + 17[/tex]

Subtract x from both sides:

[tex]3yx + x -x= 2y + 17-x[/tex]

[tex]3yx = 2y + 17-x[/tex]

Subtract 2y from both sides

[tex]3yx-2y =17-x[/tex]

Factorize:

[tex]y(3x-2) =17-x[/tex]

Make y the subject

[tex]y = \frac{17 - x}{3x - 2}[/tex]

Replace y with h'(x)

[tex]h'(x) = \frac{17 - x}{3x - 2}[/tex]

9:

[tex]h(c) = \sqrt{2c + 2}[/tex]

Replace h(c) with y

[tex]y = \sqrt{2c + 2}[/tex]

Swap positions of y and c

[tex]c = \sqrt{2y + 2}[/tex]

Square both sides

[tex]c^2 = 2y + 2[/tex]

Subtract 2 from both sides

[tex]c^2 - 2= 2y[/tex]

Make y the subject

[tex]y = \frac{c^2 - 2}{2}[/tex]

[tex]h'(c) = \frac{c^2 - 2}{2}[/tex]

10:

[tex]f(x) = \frac{x + 10}{9x - 1}[/tex]

Replace f(x) with y

[tex]y = \frac{x + 10}{9x - 1}[/tex]

Swap positions of x and y

[tex]x = \frac{y + 10}{9y - 1}[/tex]

Cross Multiply

[tex]x(9y - 1) = y + 10[/tex]

[tex]9xy - x = y + 10[/tex]

Subtract y from both sides

[tex]9xy - y - x = y - y+ 10[/tex]

[tex]9xy - y - x = 10[/tex]

Add x to both sides

[tex]9xy - y - x + x= 10 + x[/tex]

[tex]9xy - y = 10 + x[/tex]

Factorize

[tex]y(9x - 1) = 10 + x[/tex]

Make y the subject

[tex]y = \frac{10 + x}{9x - 1}[/tex]

Replace y with f'(x)

[tex]f'(x) = \frac{10 + x}{9x -1}[/tex]

ACCESS MORE