Respuesta :
Answer:
A. 10
Explanation:
For a single straight vessel; we can express the equation as;
[tex]H_{f_1} = \dfrac{8 \ fl \ Q_1^2}{\pi ^2 gd_1^5} \ \ \ \ \ ... (1)[/tex]
Given that:
The total volume Q₁ = 1000 m/s²
Then the Q₂ = 1000/100 = 10 mm/s₂
However, the question proceeds by stating that 100 pipes of the same cross-section is being used.
Therefore, the formula for the area can be written as:
[tex]\dfrac{\pi}{4}d_1^2 = 100 \bigg ( \dfrac{\pi}{4} d_2^2\bigg)[/tex]
Divide both sides by [tex]\dfrac{\pi}{4}[/tex]
[tex]d_1^2 = 100 \ d_2^2[/tex]
Making [tex]d_1[/tex] the subject of the formula;
[tex]d_1 = 10d_2[/tex]
However, considering a pipe in parallel
[tex]H_{f_2} = (H_f_2)_1 = (H_f_2)_2=...= (H_f_2)_{10}= \dfrac{8 \ fl Q_2^2}{\pi^2 \ gd _2^5} \ \ \ \ \ \ \ ...(2)[/tex]
Relating equation (1) by (2); then solving; we have;
[tex]\dfrac{H_{f_1}}{H_{f_2}} = \dfrac{\dfrac{8flQ_1^2}{\pi^2 \ gd _1^5} }{\dfrac{8\ fl Q_2^2 }{\pi^2 gd_2^5} }[/tex]
[tex]\dfrac{H_{f_1}}{H_{f_2}} =\dfrac{Q_1^2}{Q_2^2} \times \dfrac{d_2^5}{d_1^5}[/tex]
[tex]\dfrac{H_{f_1}}{H_{f_2}} =\dfrac{(1000)^2}{(10)^2} \times \dfrac{d_2^5}{(10 \ d_2)^5}[/tex]
[tex]\dfrac{H_{f_1}}{H_{f_2}} =\dfrac{1}{10}[/tex]
[tex]H_{f_2} =10H_{f_1}[/tex]
