Answer:
The answer is "[tex]\bold{1.32 \times 10^{-3} \ cm}[/tex]".
Explanation:
All of the atoms in a BCC crystalline structure are contained in the 8-corner unit cell.
Each corner connects the atom to a single cell [tex]\frac{1}{8}[/tex]
Therefore, the unit cell number of atoms:
[tex]= 8 \times \frac{1}{8}+ 1 \\\\= 1+1 \\\\= 2 \ atom[/tex]
[tex]The mass unit cell = \frac{ \text{Number of atoms} \times \text{atomic weight}} {Avagadro number}\\\\= \frac{2 \times 50.9}{6.023 \times 10^{23}} \\\\= 1.69 \times 10^{-22} \ g\\\\Area Of the atom= \frac{4r}{\sqrt{3}}\\\\ 5.96 = \frac{1.69 \times 10^{-22}}{volume}\\\\volume= 2.835 \times 10^{25}\\\\v=d^3\\\\v= (\frac{4r}{\sqrt{3}})^3\\\\\to 2.835 \times 10^{-23} \times (\sqrt{3})^3 = 4^3 r^3[/tex]
[tex]\to \sqrt[3]{\frac{{2.835 \times 10^{-23} \times (\sqrt{3})^3}}{4^3}} =r\\\\\to r= 1.32 \times 10^{-3} \ cm[/tex]