Respuesta :
Answer:
Explanation:
From the information given in the question:
The pressure = 1 atm
The saturated humid air temperature [tex]T_1 = 10^0 \ C[/tex]
The saturated humid air relative humidity [tex]\phi_1[/tex] = 100%
The atmospheric air temperature [tex]T_2[/tex] = 32°C; &
The atmospheric relative humidity [tex]\phi_2[/tex] = 80%
The data obtained at 1 atm pressure from property psychometric chart at [tex]T_1[/tex] = 10°C
[tex]h_1 = 29.4 \ kJ/kg[/tex] of air ; [tex]\omega _1[/tex] = 0.0077 kg/kg of air
At [tex]T_2= 12^0 \ C[/tex]
[tex]h_2 = 94.6 \ kJ/kg[/tex] of air; [tex]\omega _2 = 0.024 \ kg/kg \ of \ air[/tex]
If we take a look at the expression used in combining the conservation of energy and mass for adiabatic mixing of two streams; we have:
[tex]\dfrac{m_1}{m_2}= \dfrac{\omega_2 -\omega _3}{\omega _3-\omega _1}= \dfrac{h_2-h_3}{h_3-h_1}[/tex]
[tex]\dfrac{m_1}{m_2}= \dfrac{0.024 -\omega _3}{\omega _3-0.0077}= \dfrac{94.6-h_3}{h_3-29.4}[/tex]
The mixture temperature [tex]T_3[/tex] is determined through a trial and error method.
At trial and error method [tex]T_3[/tex] = 24°C
From the relative humidity of 70%;
From the psychometric chart;
The specific humidity [tex]\omega _3[/tex] = 0.0143 kg/kg of air
The enthalpy [tex]h_3[/tex] = 57.6 kJ/kg of air
Then;
[tex]\dfrac{m_1}{m_2}=1.3[/tex]
Thus, 1.3 is the proportion at which the two streams are being mixed.