Respuesta :
Answer:
The probability is [tex]P( | \^ p - p| > 0.03) =0.9945[/tex]
Step-by-step explanation:
From the question we are told that
The population proportion is [tex]p = 0.05[/tex]
The sample size is n = 408
Generally the standard deviation of the sampling distribution is mathematically represented as
[tex]\sigma = \sqrt{\frac{p (1- p)}{n} }[/tex]
=> [tex]\sigma = \sqrt{\frac{ 0.05 (1- 0.05)}{408} }[/tex]
=> [tex]\sigma = 0.0108[/tex]
Generally the probability that the sample proportion will differ from the population proportion by greater than 0.03 is mathematically represented as
[tex]P( | \^ p - p| > 0.03) = P( \frac{|\^ p - p | }{\sigma } > \frac{0.03}{0.0108} )[/tex]
[tex]\frac{|\^ p -p |}{\sigma } = |Z| (The \ standardized \ value\ of \ |\^ p -p | )[/tex]
So
[tex]P( | \^ p - p| > 0.03) = P( |Z|> 2.778 )[/tex]
=> [tex]P( | \^ p - p| > 0.03) = P( Z < 2.778) - P(Z < -2.777)[/tex]
From the z table the area under the normal curve to the left corresponding to 2.778 and -2.778 is
[tex]P( Z < 2.778) = 0.99727[/tex]
and
[tex]P( Z < -2.778) = 0.0027347[/tex]
So
[tex]P( | \^ p - p| > 0.03) = 0.99727 - 0.0027347[/tex]
=> [tex]P( | \^ p - p| > 0.03) =0.9945[/tex]