A random sample of 300 circuits generated 13 defectives. Use the data to test the hypothesis Upper H Subscript 0 Baseline colon p equals 0.05 against Use . Find the P-value for the test.

Respuesta :

Complete Question

A random sample of 300 circuits generated 13 defectives. a. Use the data to test

                            [tex]H_o : p = 0.05[/tex]

Versus

 

                          [tex]H_1 : p \ne 0.05[/tex]

Use α = 0.05. Find the P-value for the test

   

Answer:

The  p-value is  [tex]p-value = 0.5949[/tex]        

Step-by-step explanation:

From the question we are told that

  The sample size is  n = 300

    The number of defective circuits is  k = 13

Generally the sample proportion of defective circuits is mathematically represented as

        [tex]\^ p = \frac{k}{n}[/tex]

=>     [tex]\^ p = \frac{13}{300}[/tex]

=>     [tex]\^ p = 0.0433[/tex]

Generally the standard Error is mathematically represented as

       [tex]SE = \sqrt{\frac{p(1- p)}{n} }[/tex]

=>     [tex]SE = \sqrt{\frac{0.05(1- 0.05)}{300} }[/tex]

=>     [tex]SE = 0.0126[/tex]

Generally the test statistics is mathematically represented as

       [tex]z = \frac{\^ p - p }{SE}[/tex]

=>     [tex]z = \frac{0.0433 - 0.05 }{0.0126}[/tex]

=>     [tex]z = -0.5317[/tex]

From the z table  the area under the normal curve to the left  corresponding to  -0.5317  is

         [tex](P < -0.5317 ) = 0.29747[/tex]

Generally the p-value is mathematically represented as

       [tex]p-value = 2 * P(Z < -0.5317 )[/tex]

=>     [tex]p-value = 2 * 0.29747[/tex]

=>     [tex]p-value = 0.5949[/tex]