Answer:
Following are the solution to the question:
Explanation:
Calculating the total cost:
[tex]C(x) = 2,000 + 140x + \frac{4x^3}{2}[/tex]
Calculating the marginal cost:
[tex]M(x) = C'(x) = 140 + 6 \times \frac{1}{2}[/tex]
Calculating the average cost:
[tex]A( x ) =\frac{ C( x )}{x} = 2,000x-1 + 140 + 4\times \frac{1}{2}[/tex]
Calculating the marginal average cost:
[tex]m( x ) = A'( x ) = -2,000x-2 + 2x-\frac{1}{2}[/tex]
In point (a)
[tex]C( 1,000 )[/tex]
[tex]= 2,000 + 140( 1,000 ) + 4( 1,000)^{\frac{3}{2}}\\\\= \$ \ 268,491.106 \\\\ = \$ \ 268,491.11[/tex]
In point(b)
[tex]A( 1,000 )[/tex]
[tex]= 2,000( 1,000 )-1 + 140 + 4( 1,000 )^{\frac{1 }{2}}\\\\= \frac{\$ \ 268.491106} {unit}\\\\= \frac{\$ \ 268.49}{ unit}[/tex]
In point (c)
[tex]M( 1,000)[/tex]
[tex]= 140 + 6( 1,000 )^{\frac{1}{2}}\\\\= \frac{\$ \ 329.73666}{unit}\\\\= \frac{ \$ \ 329.74}{ unit}[/tex]
In point (d)
Calculating the average cost:
[tex]A'( x ) = m( x ) = -2,000x-2 + 2x- \frac{1}{2}\\\\A'( x ) = 0 = -2,000x-2 + 2x-\frac{1}{2}= 0\\\\multiply \ by \ 2\\\\\to -2,000 + 2 \times \frac{x^3}{2}= 0 \\\\\to 2\times \frac{x^3}{2} = 2,000 \\\\\to \frac{x^3}{2} = \frac{2,000}{2} \\\\ \to \frac{x^3}{2}= 1,000 \\\\\to x = ( 1,000 )^{\frac{2}{3}}\\\\ \to 100 \ units[/tex]
In point (e)
[tex]A( 100 )[/tex]
[tex]= 2,000( 100 )-1 + 140 + 4( 100 )^{\frac{1}{2}}\\\\= \frac{ \$ \ 200}{unit}[/tex]