Answer:
The answer is "50".
Step-by-step explanation:
Let,
[tex]\to p(200) = 400[/tex]
If we assume the $20 reduction would raise the number of items sold to $40 so the increment is (x - 200) if x is the number of units sold.
[tex]\to (\frac{1}{40}) \times 20 = 0.5[/tex]
[tex]\to D(x) = 400 - 0.5 \times ( x - 200 ) \\\\ \ and \\ \to R(x) = x \times (D(x) \\\\[/tex]
[tex]= x \times [ 400 - 0.5\times ( x - 200 )]\\\\ = x\times[400 - 0.5x - 100]\\\\= x\times [300 - 0.5 x]\\\\= 300x - 0.5 x^2[/tex]
[tex]R(x)= 300x- \frac{1}{2} x^2\\\\R'(x)=300-x\\[/tex]
if R'(x)=0
x=300
if 0 < x < 300 and R(x) > 0 then R(x) for maximum x is = 300
[tex]D(300) = 400 - 0.5\times ( x - 200 )\\\\[/tex]
[tex]= 400 - 0.5\times ( 300- 200 )\\\\ = 400 - 150+ 100\\\\ = 500 - 150 \\\\=350[/tex]
The rebate must be : 400 - 350 = 50