Answer:
The answer is "[tex](1.265 \pm 0.010) \ s \ and \ 0.709 \%[/tex]"
Explanation:
In point i:
[tex]T_{theo}= 2\pi \sqrt{\frac{l}{g}}[/tex]
[tex]=2\pi\sqrt{\frac{0.397}{9.8}}\\\\= 1.265 \ s[/tex]
If error in the theoretical time period :
[tex]\frac{\Delta T_{theo}}{T_theo} = \frac{1}{2} \frac{\Delta l }{l}\\\\\Delta T_{theo} = 1.265 \times \frac{1}{2} \times \frac{0.006}{0.397}[/tex]
[tex]= 0.010 \ s[/tex]
[tex]T_{theo} = (1.265 \pm 0.010) \ s[/tex]
In point ii:
[tex]\% \ difference = \frac{|T_{exp} -T_{theo}|}{\frac{T_{exp}+T_{theo}}{2}} \times 100[/tex]