a. The current in the 7-ohm resistor for the given circuit is 1.6 Amperes.
b. The current in the 8-ohm resistor for the given circuit is 1.3 Amperes.
c. The current in the 4-ohm resistor for the given circuit is 0.3 Amperes.
Given the following data:
- Resistor 1 ([tex]R_1[/tex]) = 7 Ohms
- Resistor 1 ([tex]R_2[/tex]) = 4 Ohms
- Resistor 1 ([tex]R_3[/tex]) = 8 Ohms
- Voltage 1 ([tex]V_1[/tex]) = 12 Volts
- Voltage 1 ([tex]V_2[/tex]) = 9 Volts
To determine the current in the 7-ohm resistor for the given circuit, we would apply Kirchhoff's Voltage Law (KVL):
Applying KVL to the 1st loop:
[tex]V_1 = I_1R_1 + (I_1 - I_2)R_2[/tex]
Substituting the given parameters into the formula, we have;
[tex]12 = 7I_1 + (I_1 - I_2)4\\\\12 = 7I_1+4I_1 - 4I_2\\\\12 = 11I_1- 4I_2\\\\11I_1 = 12 + 4I_2\\\\I_1 = \frac{12 \;+\; 4I_2}{11}[/tex]...equation 1.
Applying KVL to the 2nd loop:
[tex]V_2 = (I_2 - I_1)R_2 + I_2R_2\\\\9 = (I_2 - I_1)4 + 8I_2\\\\9=4I_2 - 4I_1+8I_2\\\\9=12I_2 - 4I_1[/tex].....equation 2.
Substituting the value of [tex]I_1[/tex] into eqn 2, we would solve for the current through the 8-ohm resistor:
[tex]9=12I_2 -4(\frac{12 \;+\; 4I_2}{11})\\\\9=12I_2 - (\frac{48 \;+\; 16I_2}{11})\\\\99 = 132I_2 -48 -16I_2\\\\99+48=132I_2 -48 -16I_2\\\\147 = 116I_2\\\\I_2=\frac{147}{116} \\\\I_2 = 1.3 \;Amps[/tex]
Next, we would solve for [tex]I_1[/tex]:
[tex]I_1 = \frac{12 \;+\; 4I_2}{11} \\\\I_1 = \frac{12 \;+\; 4\times 1.3}{11} \\\\I_1 = \frac{12 \;+\; 5.2}{11}\\\\I_1 = \frac{17.2}{11}\\\\I_1 =1.6\;Amps[/tex]
For the the 4-ohm resistor:
[tex]I_3 = I_1-I_2\\\\I_3 = 1.6 -1.3\\\\I_3 =0.3\;Amp[/tex]
Read more: https://brainly.com/question/15121145?referrer=searchResults