Answer:
The rocket is at 40 feet after 7.77 seconds.
Step-by-step explanation:
[tex]h(t) = -16t^{2} + 128t + 12\\40= -16t^{2} + 128t + 12\\16t^{2} - 128t + 28 = 0\\4(4t^{2} - 32t + 7) = 0\\[/tex]
We use the quadratic formula to solve for t.
[tex]t=\frac{32+\sqrt{32^{2}-4*4*7} }{2*4} \\t=\frac{32+\sqrt{1024-112} }{8}\\t=\frac{32+\sqrt{912} }{8}\\t=4+\frac{\sqrt{57} }{2}\\t=\frac{32-\sqrt{32^{2}-4*4*7} }{2*4} \\t=\frac{32-\sqrt{1024-112} }{8}\\t=\frac{32-\sqrt{912} }{8}\\t=4-\frac{\sqrt{57} }{2}[/tex]
We take the positive answer which is 7.77