Answer: 7 years
Step-by-step explanation:
Let t be the number of periods in which geese doubles .
The exponential growth function:[tex]y=Ab^t[/tex] , where A = initial value , b= growth factor.
As per given , A = 5 , b=2
i.e. Number of geese after t periods = [tex]y=5(2)^t[/tex]
Put y=111, we get
[tex]111=5(2)^t\\\\\Rightarrow\ \dfrac{111}{5}=2^t\\\\\Rightarrow\ 22.2=2^t[/tex]
Taking log on both sides , we get
[tex]\log 22.2 = t\log 2\\\\\Rightarrow\ 1.346353=t(0.30103)\\\\\Rightarrow\ t=\dfrac{1.346353}{0.30102}\\\\\Rightarrow\ t=4.47263636\approx4.47[/tex]
Now , total months = 4.47 x 18 =80.46≈ 80 months
since 1 year =12 months
Number of years it will take [tex]=\dfrac{80}{12}=\dfrac{20}{3}=6.66666666667\approx7[/tex]
Hence, it will take 7 years (approx.)