Respuesta :

Given:

In an arithmetic sequence [tex]b_n[/tex],

[tex]b_1=6,d=3[/tex]

To find:

The value of [tex]b_3[/tex].

Solution:

In an arithmetic sequence [tex]b_n[/tex],

First term : [tex]b_1=6[/tex]

Common difference : [tex]d=3[/tex]

The nth term of an AP is

[tex]a_n=a+(n-1)d[/tex]

For given arithmetic sequence,

[tex]b_n=b_1+(n-1)d[/tex]

Putting [tex]b_1=6,d=3[/tex], we get

[tex]b_n=6+(n-1)3[/tex]

[tex]b_n=6+3n-3[/tex]

[tex]b_n=3+3n[/tex]

Put n=3 to find the values of [tex]b_3[/tex].

[tex]b_3=3+3(3)[/tex]

[tex]b_3=3+9[/tex]

[tex]b_3=12[/tex]

Therefore, the value of [tex]b_3[/tex] is 12.

ACCESS MORE