Which of these expressions is the simplified form of the expression (StartFraction sine (x) Over 1 minus cosine squared (x) EndFraction) tangent (StartFraction x Over 2 EndFraction) ?

Given:
[tex]\dfrac{\sin (x)}{1-\cos ^2 (x)}\tan \left(\dfrac{x}{2}\right)[/tex].
To find:
The expression, which is equivalent to the given expression.
Solution:
We have,
[tex]\dfrac{\sin (x)}{1-\cos ^2 (x)}\tan \left(\dfrac{x}{2}\right)[/tex]
[tex]=\dfrac{\sin (x)}{1^2-\cos ^2 (x)}\times \dfrac{1-\cos (x)}{\sin (x)}[/tex] [tex][\because \tan \left(\dfrac{x}{2}\right)=\dfrac{1-\cos (x)}{\sin (x)}][/tex]
[tex]=\dfrac{\sin (x)}{(1-\cos (x))(1+\cos (x))}\times \dfrac{1-\cos (x)}{\sin (x)}[/tex] [tex][\because a^2-b^2=(a-b)(a+b)][/tex]
Cancel out the common factors.
[tex]=\dfrac{1}{1+\cos (x)}[/tex]
Therefore, the correct option is C.
Given question is incomplete; find the complete question in the attachment.
Simplified form of the given trigonometric expression will be represented by Option C.
Given expression is,
[tex][\frac{\text{sin(x)}}{1-\text{cos}^2(x)}]\tan(\frac{x}{2} )=\frac{\text{sin(x)}}{1-\text{cos}^2(x)}\times \frac{1-\text{cos}x}{\text{sinx}}[/tex] [Since. [tex]\text{tan}\frac{x}{2} =\frac{1-\text{cosx}}{sinx}[/tex]]
[tex]=\frac{1-\text{cos}x}{(1-\text{cosx})(1+\text{cosx})}[/tex]
[tex]=\frac{1}{1+\text{cosx}}[/tex]
Therefore, Option C will be the correct option.
Learn more,
https://brainly.com/question/11607107