Which of these expressions is the simplified form of the expression (StartFraction sine (x) Over 1 minus cosine squared (x) EndFraction) tangent (StartFraction x Over 2 EndFraction) ?

Which of these expressions is the simplified form of the expression StartFraction sine x Over 1 minus cosine squared x EndFraction tangent StartFraction x Over class=

Respuesta :

Given:

[tex]\dfrac{\sin (x)}{1-\cos ^2 (x)}\tan \left(\dfrac{x}{2}\right)[/tex].

To find:

The expression, which is equivalent to the given expression.

Solution:

We have,

[tex]\dfrac{\sin (x)}{1-\cos ^2 (x)}\tan \left(\dfrac{x}{2}\right)[/tex]

[tex]=\dfrac{\sin (x)}{1^2-\cos ^2 (x)}\times \dfrac{1-\cos (x)}{\sin (x)}[/tex]         [tex][\because \tan \left(\dfrac{x}{2}\right)=\dfrac{1-\cos (x)}{\sin (x)}][/tex]

[tex]=\dfrac{\sin (x)}{(1-\cos (x))(1+\cos (x))}\times \dfrac{1-\cos (x)}{\sin (x)}[/tex]         [tex][\because a^2-b^2=(a-b)(a+b)][/tex]

Cancel out the common factors.

[tex]=\dfrac{1}{1+\cos (x)}[/tex]

Therefore, the correct option is C.

    Given question is incomplete; find the complete question in the attachment.

    Simplified form of the given trigonometric expression will be represented by Option C.

Given expression is,

  • [tex][\frac{\text{sin(x)}}{1-\text{cos}^2(x)}]\tan(\frac{x}{2} )[/tex]

[tex][\frac{\text{sin(x)}}{1-\text{cos}^2(x)}]\tan(\frac{x}{2} )=\frac{\text{sin(x)}}{1-\text{cos}^2(x)}\times \frac{1-\text{cos}x}{\text{sinx}}[/tex] [Since. [tex]\text{tan}\frac{x}{2} =\frac{1-\text{cosx}}{sinx}[/tex]]

                          [tex]=\frac{1-\text{cos}x}{(1-\text{cosx})(1+\text{cosx})}[/tex]

                          [tex]=\frac{1}{1+\text{cosx}}[/tex]

   Therefore, Option C will be the correct option.

Learn more,

https://brainly.com/question/11607107

Ver imagen eudora
RELAXING NOICE
Relax