Respuesta :

ng8165

Answer:

x=5/2 and y=3

Step-by-step explanation:

since AC is a perpendicular bisector, BC=CD

[tex]6x-6=3y[/tex] so [tex]6x=3y+6[/tex]

if AC = a

using pythagorean theorem:

[tex](6x-6)^2 + a^2 = (6x+1)^2[/tex]

[tex](3y)^2 + a^2 = (5y+1)^2[/tex]

simplifies to:

[tex]36x^2-72x+36+a^2=36x^2+12x+1[/tex]

[tex]9y^2+a^2=25y^2+10y+1[/tex]

further simplifies to:

[tex]84x-35=a^2[/tex]

[tex]16y^2+10y+1=(8y+1)(2y+1)=a^2[/tex]

so we now have

[tex]84x-35=(8y+1)(2y+1)[/tex]

plugging the first equation in we get

[tex]42y+84-35=(8y+1)(2y+1)=16y^2+10y+1[/tex]

[tex]42y+49=16y^2+10y+1[/tex]

[tex]16y^2-32y-48=0[/tex]

[tex]y^2-2y-3=0[/tex]

[tex](y-3)(y+1)=0[/tex] so [tex]y=-1, y=3[/tex]

y=-1 is impossible, so y=3

therefore x=15/6=5/2

RELAXING NOICE
Relax