how do you solve this?

Answer:
x=5/2 and y=3
Step-by-step explanation:
since AC is a perpendicular bisector, BC=CD
[tex]6x-6=3y[/tex] so [tex]6x=3y+6[/tex]
if AC = a
using pythagorean theorem:
[tex](6x-6)^2 + a^2 = (6x+1)^2[/tex]
[tex](3y)^2 + a^2 = (5y+1)^2[/tex]
simplifies to:
[tex]36x^2-72x+36+a^2=36x^2+12x+1[/tex]
[tex]9y^2+a^2=25y^2+10y+1[/tex]
further simplifies to:
[tex]84x-35=a^2[/tex]
[tex]16y^2+10y+1=(8y+1)(2y+1)=a^2[/tex]
so we now have
[tex]84x-35=(8y+1)(2y+1)[/tex]
plugging the first equation in we get
[tex]42y+84-35=(8y+1)(2y+1)=16y^2+10y+1[/tex]
[tex]42y+49=16y^2+10y+1[/tex]
[tex]16y^2-32y-48=0[/tex]
[tex]y^2-2y-3=0[/tex]
[tex](y-3)(y+1)=0[/tex] so [tex]y=-1, y=3[/tex]
y=-1 is impossible, so y=3
therefore x=15/6=5/2