Answer:
[tex]975.1\ \text{m/s}[/tex] and [tex]1392.56\ \text{m/s}[/tex]
[tex]276830.96\ \text{m}[/tex]
284 seconds
Explanation:
(a) [tex]u=\text{Initial velocity}=1700\ \text{m/s}[/tex]
[tex]\theta[/tex] = Angle of inclination = [tex]55^{\circ}[/tex]
Horizontal velocity is given by
[tex]u_x=u\cos\theta\\\Rightarrow u_x=1700\times \cos55^{\circ}\\\Rightarrow u_x=975.1\ \text{m/s}[/tex]
Vertical velocity is given by
[tex]u_y=u\sin\theta\\\Rightarrow u_x=1700\times \sin55^{\circ}\\\Rightarrow u_x=1392.56\ \text{m/s}[/tex]
The horizontal and vertical velocities are [tex]975.1\ \text{m/s}[/tex] and [tex]1392.56\ \text{m/s}[/tex] respectively.
(b) Range of projectile is given by
[tex]R=\dfrac{u^2\sin2\theta}{g}\\\Rightarrow R=\dfrac{1700^2\sin(2\times 55^{\circ})}{9.81}\\\Rightarrow R=276830.96\ \text{m}[/tex]
The shell hit the ground [tex]276830.96\ \text{m}[/tex] from the launch position.
(c) Time of flight is given by
[tex]t=\dfrac{2u\sin\theta}{g}\\\Rightarrow t=\dfrac{2\times 1700\times \sin55^{\circ}}{9.81}\\\Rightarrow t=284\ \text{s}[/tex]
The shell was in the air for 284 seconds.