A. (0.714, 0.826)
Step-by-step explanation:
Given that:
The sample size n = 150
The number of success(sample proportion) x = 115
The population proportion [tex]\hat p[/tex] = [tex]\dfrac{x}{n}[/tex]
The population proportion [tex]\hat p[/tex] = [tex]\dfrac{115}{150}[/tex]
The population proportion [tex]\hat p[/tex] = 0.767
At 90% confidence interval level;
[tex]Z_{\alpha /2} = Z_{0.05} = 1.645[/tex]
Thus, the confidence interval estimate for the true population proportion can be computed by using the formula:
[tex]=\hat p \ \pm \ z_{\alpha /2} \sqrt{\dfrac{\hat p(1- \hat p)}{n} }[/tex]
[tex]= 0.767 \ \pm 1.645 * \sqrt{\dfrac{0.767(1- 0.767)}{150} }[/tex]
[tex]= 0.767 \ \pm 1.645 * \sqrt{\dfrac{0.767(0.233)}{150} }[/tex]
[tex]= 0.767 \ \pm 1.645 * \sqrt{\dfrac{0.178711}{150} }[/tex]
[tex]= 0.767 \ \pm 1.645 * \sqrt{.0011914}[/tex]
[tex]= 0.767 \ \pm 1.645 * 0.03452[/tex]
[tex]= 0.767 \ \pm 0.0568[/tex]
= (0.767 - 0.0568, 0.767 + 0.0568)
= (0.7102 , 0.8238 )
Due to approximation; the confidence interval estimate for the true population proportion is [tex]\simeq[/tex] (0.714, 0.826)