Answer:
The price that maximizes the revenue is $63.75
Step-by-step explanation:
Analyzing the statement one after the other.
[tex]Initial\ Quantity = 550[/tex] ---- When ----- [tex]Initial\ Price = \$100[/tex]
When there's a reduction of $1, we have:
[tex]Quantity = 550 + 20x[/tex] and [tex]Price = 100 - x[/tex]
Where x represents the maximum reduction
At this point, we need to calculate the revenue (R)
[tex]R = Quantity * Price.[/tex]
[tex]R = (550 + 20x) * (100 - x)[/tex]
Open Brackets
[tex]R = 55000 - 550x + 2000x - 20x^2[/tex]
[tex]R = 55000 +1450x - 20x^2[/tex]
Differentiate both sides with respect to x
[tex]\frac{dR}{dx} = 0 + 1450 - 40x[/tex]
[tex]\frac{dR}{dx} = 1450 - 40x[/tex]
To maximize revenue;
[tex]\frac{dR}{dx} = 0[/tex]
So:
[tex]1450 - 40x = 0[/tex]
[tex]1450 =40x[/tex]
Solve for x
[tex]x = 1450/40[/tex]
[tex]x = 36.25[/tex]
Recall that:
[tex]Price = 100 - x[/tex]
Substitute [tex]x = 36.25[/tex]
[tex]Price = 100 - 36.25[/tex]
[tex]Price = 63.75[/tex]
Hence:
The price that maximizes the revenue is $63.75