Respuesta :

Answer:

 [tex]\frac{[(9-2)^{2}]^{4}}{(4+3)^{5} }[/tex] = 7³

Step-by-step explanation:

Let us revise some rules of exponents

  • [tex]a^{m}*a^{n}=a^{m+n}[/tex]
  • [tex]\frac{a^{m}}{a^{n}}=a^{m-n}[/tex]
  • [tex](a^{m})^{n}=a^{mn}[/tex]

Let us use some of these rules to solve the question

∵ The expression is [tex]\frac{[(9-2)^{2}]^{4}}{(4+3)^{5} }[/tex]

→ At first, simplify the bracket

∵ 9 - 2 = 7 and 4 + 3 = 7

∴  [tex]\frac{[(9-2)^{2}]^{4}}{(4+3)^{5} }[/tex] = [tex]\frac{[(7)^{2}]^{4}}{(7)^{5} }[/tex]

→ Use the 3rd rule above to simplify the numerator

∵ [tex](7^{2})^{4}=7^{(2)(4)}[/tex]

∴  [tex]\frac{[(7)^{2}]^{4}}{(7)^{5} }[/tex] =  [tex]\frac{7^{8}}{7^{5}}[/tex]

→ Use the 2nd rule above to simplify the result

∴  [tex]\frac{7^{8}}{7^{5}}[/tex] = [tex]7^{8-5}[/tex] = 7³

∴  [tex]\frac{[(9-2)^{2}]^{4}}{(4+3)^{5} }[/tex] = 7³

RELAXING NOICE
Relax