Answer:
[tex]\frac{[(9-2)^{2}]^{4}}{(4+3)^{5} }[/tex] = 7³
Step-by-step explanation:
Let us revise some rules of exponents
Let us use some of these rules to solve the question
∵ The expression is [tex]\frac{[(9-2)^{2}]^{4}}{(4+3)^{5} }[/tex]
→ At first, simplify the bracket
∵ 9 - 2 = 7 and 4 + 3 = 7
∴ [tex]\frac{[(9-2)^{2}]^{4}}{(4+3)^{5} }[/tex] = [tex]\frac{[(7)^{2}]^{4}}{(7)^{5} }[/tex]
→ Use the 3rd rule above to simplify the numerator
∵ [tex](7^{2})^{4}=7^{(2)(4)}[/tex]
∴ [tex]\frac{[(7)^{2}]^{4}}{(7)^{5} }[/tex] = [tex]\frac{7^{8}}{7^{5}}[/tex]
→ Use the 2nd rule above to simplify the result
∴ [tex]\frac{7^{8}}{7^{5}}[/tex] = [tex]7^{8-5}[/tex] = 7³
∴ [tex]\frac{[(9-2)^{2}]^{4}}{(4+3)^{5} }[/tex] = 7³