Respuesta :

Answer:

The quotient is 6v³ + 2v² + 5v - 2

Step-by-step explanation:

To solve using the synthetic Division

1. Arrange the variable according to its powers from greatest to smallest

2. Equate the divisor by 0 to find the value of the variable

3. Use the coefficients of the terms with it to find the quotient

Let us do that

∵ The dividend is [tex]26v^{3}+18v+6v^{4}-8+13v^{2}[/tex]

→ Arrange the terms from greatest power to the smallest power

∴ The dividend is [tex]6v^{4}+26v^{3}+13v^{2}+18v-6[/tex]

∵ The divisor is v + 4

→ Equate it by 0 to find v

∵ v + 4 = 0

→ Subtract 4 from both sides

∴ v + 4 - 4 = 0 - 4

∴ v = -4

→ Now use the coefficient of the terms with it

-4 → 6    26    13    18    -8

-------------------------------------- Multiply 6 by -4 and put the answer under 26

       6   -24    13    18   -8  

--------------------------------------  Add 26 and -24

       6     2     13     18   -8

-------------------------------------- Multiply 2 by -4 and put the answer under 13

       6     2     -8     18   -8

--------------------------------------  Add 13 and -8

       6     2     5     18   -8

-------------------------------------- Multiply 5 by -4 and put the answer under 18

       6     2     5    -20  -8

--------------------------------------  Add 18 and -20

       6     2     5     -2   -8

-------------------------------------- Multiply -2 by -4 and put the answer under -8

       6     2     5     -2    8

--------------------------------------  Add -8 and 8

       6     2     5     -2    0

  • The coefficients of the terms of the quotients are 6, 2, 5, -2
  • The degree of the quotient is less than the degree of the dividend by 1
  • The power of the greatest term of the quotient is v³

∴ The quotient is 6v³ + 2v² + 5v - 2

RELAXING NOICE
Relax