Respuesta :

Given:

The function is

[tex]f(x)=x^3-3x^2+5x-15[/tex]

To find:

The root of the function from the given possible roots.

Solution:

We have,

[tex]f(x)=x^3-3x^2+5x-15[/tex]

At x=-3,

[tex]f(-3)=(-3)^3-3(-3)^2+5(-3)-15[/tex]

[tex]f(-3)=-27-27-15-15[/tex]

[tex]f(-3)=-84\neq 0[/tex]

At x=-1,

[tex]f(-1)=(-1)^3-3(-1)^2+5(-1)-15[/tex]

[tex]f(-1)=-1-3-5-15[/tex]

[tex]f(-1)=-24\neq 0[/tex]

At x=1,

[tex]f(1)=(1)^3-3(1)^2+5(1)-15[/tex]

[tex]f(1)=1-3+5-15[/tex]

[tex]f(1)=-12\neq 0[/tex]

At x=3,

[tex]f(3)=(3)^3-3(3)^2+5(3)-15[/tex]

[tex]f(3)=27-27+15-15[/tex]

[tex]f(3)=0[/tex]

Since, the value of given function is 0 at only x=3, therefore 3 is a root of given function.

Hence, the correct option is D.

RELAXING NOICE
Relax